1
|
Badran SR, Hamed A. Is the trend toward a sustainable green synthesis of copper oxide nanoparticles completely safe for Oreochromis niloticus when compared to chemical ones?: using oxidative stress, bioaccumulation, and histological biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9477-9494. [PMID: 38190069 PMCID: PMC10824803 DOI: 10.1007/s11356-023-31707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Scientists worldwide have noticed that cutting-edge technologies can be used to produce nanoparticles (NPs) in a sustainable and environmentally friendly way, instead of the old methods. However, the effectiveness of this approach for aquatic environments and species still needs to be determined. Therefore, this study aims to compare between the toxicity of green and chemically synthesized copper oxide nanoparticles (GS and CS) CuO NPs at two different concentrations on Nile tilapia (Oreochromis niloticus) using various biomarkers. CuO NPs' formation was proved, and their different characterizations were recorded. Then, the fish samples were randomly allocated in glass aquaria into five groups: one acted as a control group, and the other groups were exposed to two concentrations (25 and 50 mg/L) of GS-CuO NPs and CS-CuO NPs, separately, for 4 days. After the experimental time, in all groups that were exposed to two concentrations of both synthesized CuO NPs, the results revealed that glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substances (TBARS) levels were elevated in the liver and gills compared to glutathione reduced (GSH) content, which showed a significant decline. Bioaccumulation of Cu was more prevalent in the liver than in the gills, and the highest bioaccumulation capacity was more evident in the groups exposed to CS-CuO NPs. Moreover, the bioaccumulation of Cu caused severe histological changes in the liver and gills. In conclusion, the results suggested that GS-CuO NPs revealed less toxicity than CS-CuO NPs to the examined fish. However, they are still toxic, and their toxic effect cannot be overlooked.
Collapse
Affiliation(s)
- Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Aliaa Hamed
- Department of Biology, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
2
|
Mahjoubian M, Naeemi AS, Moradi-Shoeili Z, Tyler CR, Mansouri B. Oxidative stress, genotoxic effects, and other damages caused by chronic exposure to silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs), and their mixtures in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2023; 472:116569. [PMID: 37263299 DOI: 10.1016/j.taap.2023.116569] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
This study assessed the oxidative stress impacts of Ag NPs and ZnO NPs and their mixtures in zebrafish (Danio rerio). Zebrafish were exposed to sublethal concentrations of each NP and a mixture for 28 days followed by a 28-day recovery period (without NP exposure) and measurements made on hepatic levels of antioxidant enzymes (CAT, SOD, and GPx), MDA levels, expression of the genes for the Hsp70 and Hsp90, and MT, blood biochemical parameters (total protein, globulin, albumin, AST, ALT, ALP, and LDH), and genotoxicity in erythrocytes (via measurement of micronuclei (MN) and nuclear (NA) abnormalities). There was a tendency for an increase in the variation in the responses of antioxidant defense systems and there were higher MDA levels with increasing exposure concentration of Ag NPs and with increasing exposure time. Total protein, globulin, and albumin decreased during the exposure period, especially on the days of 28. Moreover, levels of AST and LDH increased significantly in the NPs co-exposure treatments, while levels of ALT and ALP significantly decreased. The highest expression levels for these genes occurred on day 14 and in the NPs co-exposure treatments. For exposure to both NPs individually and as a mixture, the frequency of MN and other NA were significantly increased (p < 0.05). During the recovery periods, most of the effects seen were reduced, most notably in the individual NPs treatments. The overall results suggest that the toxic effects of Ag NPs and ZnO NPs in combination significantly increase their toxicity in zebrafish.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, United Kingdom
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Auclair J, Turcotte P, Gagnon C, Peyrot C, Wilkinson KJ, Gagné F. Investigation on the Toxicity of Nanoparticle Mixture in Rainbow Trout Juveniles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:311. [PMID: 36678064 PMCID: PMC9861584 DOI: 10.3390/nano13020311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The environmental impacts of nanoparticle mixtures in the aquatic environment is not well understood. The purpose of this study examined the sub-lethal toxicity of low concentrations (ug/L range) of selected nanoparticles alone and in mixtures in juvenile trout. Fish were exposed to to individual and two environmentally relevant mixtures of silver (nAg), copper oxide (nCuO) and cerium oxide (nCeO) nanoparticles for 96 h at 15 °C. After the exposure period, fish were depurated overnight and tissue levels in Ag, Ce, Cu and Zn were determined along with a suite of effects biomarkers such as oxidative stress/inflammation, denatured protein tagging (ubiquitin), DNA strand breaks (genotoxicity) and acetylcholinesterase (AChE) activity. The data showed that these nanoparticles behaved as suspended matter but were nevertheless bioavailable for fish with bioconcentration factors of 6, 8 and 2 for nAg, nCeO and nCuO respectively. Only nCuO alone increased malonaldehyde (lipid peroxidation) contents but all nanoparticles increased DNA damage, protein-ubiquitin labeling, and decreased AChE activity. Globally, the toxicity of nCeO and nCuO was generally stronger than nAg, and antagonist effects were found in the mixtures. The interactions involved in these antagonisms are not well understood but do not involve the liberation of free ions and labile zinc in tissues. In conclusion, the bioavailability and toxicity of these nanoparticles are influenced by mixtures of nanoparticles, which is likely to occur in contaminated environments.
Collapse
|
4
|
Silva MLND, Nogueira DJ, Vicentini DS, Puerari RC, Alves PRL, Fuzinatto CF, Matias WG. Rapid Communication: oxidative stress induced by mixed exposure to glyphosate and silver nanoparticles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:586-590. [PMID: 35317707 DOI: 10.1080/15287394.2022.2054888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this study was to examine oxidative stress induced by the binary mixture of silver nanoparticles (AgNP) and glyphosate (Gly) in Daphnia magna by measurement of reactive oxygen species (ROS) production, glutathione (GSH) levels, enzyme activities of catalase (CAT) and superoxide dismutase (SOD) as well as malondialdehyde (MDA) content. Acute exposure of Daphnia magna to binary mixture of AgNP and Gly resulted in significant biochemical responses indicative of oxidative damage. This response seemed to be related to imbalance in enzymatic/non-enzymatic antioxidant enzymes associated with intracellular overproduction of ROS and significant increase in MDA levels, indicating that the integrity and function of the cell membrane was damaged. These changes adversely affected the fitness and survival of Daphnia magna and negatively influenced offspring growth and reproduction.
Collapse
Affiliation(s)
- Marlon Luiz Neves da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Federal University of Fronteira Sul, Chapecó, Brazil
| | - Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Denice Schulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rodrigo Costa Puerari
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
Qiu X, Liu L, Xu W, Chen C, Li M, Shi Y, Wu X, Chen K, Wang C. Zeolitic Imidazolate Framework-8 Nanoparticles Exhibit More Severe Toxicity to the Embryo/Larvae of Zebrafish ( Danio rerio) When Co-Exposed with Cetylpyridinium Chloride. Antioxidants (Basel) 2022; 11:945. [PMID: 35624808 PMCID: PMC9138101 DOI: 10.3390/antiox11050945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The combined application of nanoparticles and surfactants has attracted tremendous attention in basic research and industry. However, knowledge of their combined toxicity remains scarce. In this study, we exposed zebrafish embryos to cetylpyridinium chloride (CPC, a cationic surfactant, at 0 and 20 μg/L), zeolitic imidazolate framework nanoparticles (ZIF-NPs, at 0, 30, and 60 mg/L), and their mixtures until 120 h post-fertilization (hpf). Within the used concentration range, both single and combined exposures exhibited limited effects on the survival and hatching of zebrafish. However, the combined exposure of ZIF-NPs and CPC caused more severe effects on the heart rate at both 48 and 72 hpf. The combined exposure also induced significant hyperactivity (i.e., increasing the average swimming velocity) and oxidative stress in zebrafish larvae (at 120 hpf), although all single exposure treatments exhibited limited impacts. Furthermore, the level of reactive oxygen species (or malondialdehyde) exhibited a significantly positive correlation with the heart rate (or average swimming velocity) of zebrafish, suggesting that oxidative stress plays a role in mediating the combined toxicity of CPC and ZIF-NPs to zebrafish. Our findings suggest that the interaction of CPC and ZIF-NPs should not be ignored when assessing the potential risks of their mixtures.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Wei Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chongchen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
6
|
Daramola OB, Omole RK, Akinwale IV, Otuyelu FO, Akinsanola BA, Fadare TO, George RC, Torimiro N. Bio-Receptors Functionalized Nanoparticles: A Resourceful Sensing and Colorimetric Detection Tool for Pathogenic Bacteria and Microbial Biomolecules. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.885803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pathogenic bacteria and several biomolecules produced by cells and living organisms are common biological components posing a harmful threat to global health. Several studies have devised methods for the detection of varying pathogenic bacteria and biomolecules in different settings such as food, water, soil, among others. Some of the detection studies highlighting target pathogenic bacteria and biomolecules, mechanisms of detection, colorimetric outputs, and detection limits have been summarized in this review. In the last 2 decades, studies have harnessed various nanotechnology-based methods for the detection of pathogenic bacteria and biomolecules with much attention on functionalization techniques. This review considers the detection mechanisms, colorimetric prowess of bio-receptors and compares the reported detection efficiency for some bio-receptor functionalized nanoparticles. Some studies reported visual, rapid, and high-intensity colorimetric detection of pathogenic bacteria and biomolecules at a very low concentration of the analyte. Other studies reported slight colorimetric detection only with a large concentration of an analyte. The effectiveness of bio-receptor functionalized nanoparticles as detection component varies depending on their selectivity, specificity, and the binding interaction exhibited by nanoparticles, bio-receptor, and analytes to form a bio-sensing complex. It is however important to note that the colorimetric properties of some bio-receptor functionalized nanoparticles have shown strong and brilliant potential for real-time and visual-aided diagnostic results, not only to assess food and water quality but also for environmental monitoring of pathogenic bacteria and a wide array of biomolecules.
Collapse
|
7
|
Yu Q, Wang Z, Wang G, Peijnenburg WJGM, Vijver MG. Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118413. [PMID: 34751154 DOI: 10.1016/j.envpol.2021.118413] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 05/24/2023]
Abstract
Various modern products have metallic nanoparticles (MNPs) embedded to enhance products performance. Technological advances enable nowadays even multiple hybrid nanoparticles. Consequently, the future co-release of multiple MNPs will inevitably result in the presence of MNP mixtures in the environment. An important question is if the responses of mixtures of MNPs can be dealt with in a similar way as with the responses of biota to mixtures of metal salts. Moreover, natural organic matter (NOM) is an important parameter affecting the behavior and effect of MNPs. Herein, we determined the joint toxicity and accumulation of copper nanoparticles (CuNPs) and zinc oxide nanoparticles (ZnONPs) in Daphnia magna in the absence and presence of Suwannee River natural organic matter (SR-NOM), compared to the joint toxicity and accumulation of corresponding metal salts. The results of toxicity testing showed that the joint toxicity of CuNPs + ZnONPs was greater than the single toxicity of CuNPs or ZnONPs. The joint toxic action of CuNPs + ZnONPs was additive or more-than-additive for D. magna. A similar pattern was found in the toxicity of the mixtures of Cu- and Zn-salts from the literature data. The presence of SR-NOM had no significant impact on the joint toxicity of CuNPs + ZnONPs. The calculated component-specific contribution to overall toxicity indicated that SR-NOM increased the relative contribution of dissolved ions released from the MNPs to the toxicity of the binary mixtures at high-effect concentrations of individual MNPs. Moreover, dissolved Zn-ions released from the ZnONPs were found to dominate the joint toxicity of CuNPs + ZnONPs in the presence of SR-NOM. Furthermore, the results of the accumulation experiment displayed that the presence of SR-NOM significantly enhanced the accumulation of either CuNPs or ZnONPs in D. magna exposed to the MNP mixtures.
Collapse
Affiliation(s)
- Qi Yu
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Guiyin Wang
- College of Environmental Science, Sichuan Agricultural University, Wenjiang, 611130, PR China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300 RA, the Netherlands
| |
Collapse
|
8
|
Manikandan DB, Arumugam M, Veeran S, Sridhar A, Krishnasamy Sekar R, Perumalsamy B, Ramasamy T. Biofabrication of ecofriendly copper oxide nanoparticles using Ocimum americanum aqueous leaf extract: analysis of in vitro antibacterial, anticancer, and photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:33927-33941. [PMID: 33410001 DOI: 10.1007/s11356-020-12108-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology tends to be a swiftly growing field of research that actively influences and inhibits the growth of bacteria/cancer. Noble metal nanoparticles (NPs) such as silver, copper, and gold have been used to damage bacterial and cancer growth over recent years; however, the toxicity of higher NPs concentrations remains a major issue. The copper oxide nanoparticles (CuONPs) were therefore fabricated using a simple green chemistry approach. Biofabricated CuONPs were characterized using UV-visible, FE-SEM with EDS, HR-TEM, FT-IR, XRD, Raman spectroscopy, and XPS analysis. Formations of CuONPs have been observed by UV-visible absorbance peak at 360.74 nm. The surface morphology of the CuONPs showed the spherical structure and size (~ 68 nm). The EDS spectrum of CuONPs has proved to be the key signals of copper (Cu) and oxygen (O) components. FT-IR analysis, to validate the important functional biomolecules (O-H, C=C, C-H, C-O) are responsible for reduction and stabilization of CuONPs. The monoclinic end-centered crystalline structures of CuONPs were confirmed with XRD planes. The electrochemical oxygen states of the CuONPs have been studied using spectroscopy of the Raman and X-ray photoelectron. After successful preparation, CuONPs examined their antibacterial, anticancer, and photocatalytic activities. Green-fabricated CuONPs were promising antibacterial candidate against human pathogenic gram-negative bacteria Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. CuONPs were demonstrated the excellent anticancer activity against A549 human lung adenocarcinoma cell line. Furthermore, CuONPs exhibited photocatalytic degradation of azo dyes such as eosin yellow (EY), rhodamine 123 (Rh 123), and methylene blue (MB). Biofabricated CuONPs may therefore be an important biomedical research for the aid of bacterial/cancer diseases and photocatalytic degradation of azo dyes.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
- National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
9
|
Bakare AA, Fadare AO, Ogunsuyi OI, Bakare OC. Exposure to a contaminated tropical freshwater (Awba Dam) in Ibadan, Nigeria, induced cytogenotoxicity and haemato-pathological changes in Clarias gariepinus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19391-19399. [PMID: 33398730 DOI: 10.1007/s11356-020-12145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Awba reservoir serves the purpose of water supply in the University of Ibadan, Nigeria. Recent reports on pollution status have focused on toxicological implication of contaminants in this reservoir. But none is on genetic and systemic toxicity of the water in fish. We investigated cytogenotoxicity of Awba Dam water (ADW) on Clarias gariepinus using piscine micronucleus (MN) assay. Haematological and histopathological changes were also evaluated. Bi-monthly composite water samples were collected from the reservoir from July to October, 2018. The water was used to cultivate juvenile C. gariepinus in the laboratory for 1-4 months, and tap water was used as the negative control. Peripheral blood erythrocytes from the caudal veins of C. gariepinus were used for the monthly MN assessment. There was significant (p < 0.05) induction of MN and other erythrocyte nuclear abnormalities in C. gariepinus within the period of study. There were variations in the haematological indices and pathological alterations in sections of the gill, liver and kidney of C. gariepinus. The levels of some heavy metals in ADW were above standard permissible limits and might have contributed to the observed cytogenetic and systemic disruptions. These findings may be used by the concerned authorities to evolve management strategies for the reservoir's health and biologic resources.
Collapse
Affiliation(s)
- Adekunle A Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
| | - Adewale O Fadare
- Ecology and Environmental Biology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Olusegun I Ogunsuyi
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria
| | - Omonike C Bakare
- Department of Biological Sciences, Lead City University, Ibadan, Nigeria
| |
Collapse
|
10
|
da Silva MLN, Nogueira DJ, Köerich JS, Vaz VP, Justino NM, Schmidt JRA, Vicentini DS, Matias MS, de Castilhos AB, Fuzinatto CF, Matias WG. Multigenerational Toxic Effects on Daphnia magna Induced by Silver Nanoparticles and Glyphosate Mixture. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1123-1131. [PMID: 33270267 DOI: 10.1002/etc.4952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Multigenerational toxicological effects of a binary mixture of silver nanoparticles (AgNPs) with glyphosate were identified in Daphnia magna using acute and chronic toxicity tests. Acute toxicity interactions were analyzed with the Abbott method. In the chronic tests, the survival, growth, reproduction, and age at first brood were evaluated for the parents and the exposed (F1E) and non-exposed (F1NE) descendants. The scales tested for binary mixture, at the acute level, presented antagonistic and additive interactions, possibly associated with the complexation of the AgNPs by glyphosate. Multigenerational chronic effects related to the parameters, reproduction, and age at first brood were observed in the descendants tested with the individual compounds, with no recovery for F1E and F1NE. In organisms exposed to binary mixture, there was a delay in the age at first brood and also a significant change in the reproduction parameter, with a strong reduction for the parents, F1E, and F1NE, indicating a higher toxicity than the compounds tested individually. Although the results for acute interactions between AgNP and glyphosate did not provide clear evidence, multigenerational chronic binary mixture trials have resulted in unexpected toxicity compared with individual treatments, increasing the concerns associated with this co-exposure in other scenarios. Therefore, the interaction of binary mixture with the organisms merits further investigation and the results reported in the present study will be useful in this regard. Environ Toxicol Chem 2021;40:1123-1131. © 2020 SETAC.
Collapse
Affiliation(s)
- Marlon Luiz Neves da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Federal University of Fronteira Sul, Chapecó, Brazil
| | - Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jéssica Schveitzer Köerich
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Vitor Pereira Vaz
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Naiara Mottim Justino
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - José Renato Alves Schmidt
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Denice Schulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marcelo Seleme Matias
- Solid Waste Research Laboratory, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Armando Borges de Castilhos
- Solid Waste Research Laboratory, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
11
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
12
|
Ogunsuyi OM, Adegoye EO, Ogunsuyi OI, Alabi OA, Alimba CG, Bakare AA. Titanium dioxide nanoparticles-induced cytogenotoxicity and alterations in haematological indices of Clarias gariepinus (Burchell, 1822). Toxicol Ind Health 2020; 36:807-815. [PMID: 32812516 DOI: 10.1177/0748233720948682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application of titanium dioxide (TiO2) nanoparticles (NPs) in the manufacturing of consumer products has increased tremendously and with the potential to induce deleterious effects on aquatic biota. There have been reports on metal oxide NP toxicity in aquatic organisms, however, information on cytotoxicity and genotoxicity of TiO2 NPs on the African catfish, Clarias gariepinus, is scarce. In this study, we investigated the genotoxicity and haematotoxicity of TiO2 NPs in C. gariepinus using the micronucleus (MN) assay and haematological analysis, respectively. Juvenile C. gariepinus were exposed to 6.25, 12.5, 25.0, 50.0 and 100.0 mg L-1 concentrations of TiO2 NPs for 7 and 28 days. Benzene (0.05 mL L-1) and dechlorinated tap water were used as positive and negative controls, respectively. Data of the MN showed a significant (p < 0.05) concentration-dependent increase in the frequency of MN at both exposure periods in comparison to negative control. Red blood cells, haematocrit, platelets and heterophils significantly reduced with an increased mean corpuscular haemoglobin concentration and lymphocytes at the 7-day exposure period, while in the 28-day exposure period, mean cell volume, mean corpuscular haemoglobin and lymphocytes had a significant increase in comparison with the negative control. This study indicates that TiO2 NPs induced cytogenetic and haematological alterations in C. gariepinus and is of relevance in biodiversity and aquatic health management.
Collapse
Affiliation(s)
- Opeoluwa M Ogunsuyi
- Department of Zoology, Cell Biology and Genetics Unit, 70670University of Ibadan, Ibadan, Nigeria
| | - Elizabeth O Adegoye
- Department of Zoology, Cell Biology and Genetics Unit, 70670University of Ibadan, Ibadan, Nigeria
| | - Olusegun I Ogunsuyi
- Department of Biological Sciences, 217920Mountain Top University, Ogun State, Nigeria
| | - Okunola A Alabi
- Department of Biology, 107738Federal University of Technology, Akure, Ondo State, Nigeria
| | - Chibuisi G Alimba
- Department of Zoology, Cell Biology and Genetics Unit, 70670University of Ibadan, Ibadan, Nigeria
| | - Adekunle A Bakare
- Department of Zoology, Cell Biology and Genetics Unit, 70670University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
13
|
Olajuyigbe FM, Adeleye OA, Kolawole AO, Bolarinwa TO, Fasakin EA, Asenuga ER, Ajele JO. Bioremediation treatment improves water quality for Nile tilapia (Oreochromis niloticus) under crude oil pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25689-25702. [PMID: 32350841 DOI: 10.1007/s11356-020-09020-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Despite favorable publicity of bioremediation as an affordable technology for cleanup of crude oil, public concerns on ecological safety in the presence of residual oil remain a global challenge. In this study, effects of crude oil exposure at sublethal concentration (0.25% v/v) and bioremediation treatment were investigated on histology and biochemical parameters of organs (gills, liver, kidney, and brain) of juvenile Nile tilapia (Oreochromis niloticus). Ten percent (10%) of mixed bacterial culture was used for bioaugmentation treatment. Ninety juvenile fish were used for study, and experiments were carried out in triplicates for three different groups. Malondialdehyde (MDA), an index of lipid peroxidation, was assayed as biomarker for oxidative stress. Activities of antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), level of non-enzymatic antioxidant (reduced glutathione (GSH)), and activity of brain acetylcholinesterase (AChE) were assayed in selected fish organs as markers for environmental stressor. Histological examination of fish organs was done for all groups. Results of treated groups were compared with those of the control. Levels of MDA significantly increased with significant inhibition of antioxidant enzyme activities in the polluted group. Activities of SOD, CAT, and AChE and levels of GSH in fish organs in the bioaugmentation group were similar to results obtained in the control. Remarkably, the bioaugmentation group showed minimal or no lesions which suggested the efficacy of bioremediation technique in alleviating crude oil toxicity and preserving normal physiology of fish. This study provides deeper insights into the ecosafety of bioremediation treatment and can be extrapolated to other species of fish.
Collapse
Affiliation(s)
- Folasade M Olajuyigbe
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, 340252, Nigeria.
| | - Oluwaseun A Adeleye
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, 340252, Nigeria
| | - Ayodele O Kolawole
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, 340252, Nigeria
| | - Tolulope O Bolarinwa
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, 340252, Nigeria
| | - Emmanuel A Fasakin
- Department of Fisheries and Aquaculture Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Akure, Nigeria
| | - Ebunoluwa R Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Benin City, Nigeria
| | - Joshua O Ajele
- Enzyme Biotechnology and Environmental Health Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, 340252, Nigeria
| |
Collapse
|
14
|
Hadrup N, Sharma AK, Loeschner K, Jacobsen NR. Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review. Regul Toxicol Pharmacol 2020; 115:104690. [PMID: 32474071 DOI: 10.1016/j.yrtph.2020.104690] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Silver is used in a wide range of products, and during their production and use, humans may be exposed through inhalation. Therefore, it is critical to know the concentration levels at which adverse effects may occur. In rodents, inhalation of silver nanoparticles has resulted in increased silver in the lungs, lymph nodes, liver, kidney, spleen, ovaries, and testes. Reported excretion pathways of pulmonary silver are urinary and faecal excretion. Acute effects in humans of the inhalation of silver include lung failure that involved increased heart rate and decreased arterial blood oxygen pressure. Argyria-a blue-grey discoloration of skin due to deposited silver-was observed after pulmonary exposure in 3 individuals; however, the presence of silver in the discolorations was not tested. Argyria after inhalation seems to be less likely than after oral or dermal exposure. Repeated inhalation findings in rodents have shown effects on lung function, pulmonary inflammation, bile duct hyperplasia, and genotoxicity. In our evaluation, the range of NOAEC values was 0.11-0.75 mg/m3. Silver in the ionic form is likely more toxic than in the nanoparticle form but that difference could reflect their different biokinetics. However, silver nanoparticles and ions have a similar pattern of toxicity, probably reflecting that the effect of silver nanoparticles is primarily mediated by released ions. Concerning genotoxicity studies, we evaluated silver to be positive based on studies in mammalian cells in vitro and in vivo when considering various exposure routes. Carcinogenicity data are absent; therefore, no conclusion can be provided on this endpoint.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Denmark
| | - Katrin Loeschner
- Division for Food Technology, Research Group for Nano-Bio Science, National Food Institute, Technical University of Denmark, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, DK, 2100, Copenhagen, Denmark.
| |
Collapse
|