1
|
Deshmukh MP, Pande A, Choudhari V, Pendse DS. Investigation of bioethanol production from jatropha deoiled cake and its blending effects for environmental sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103640-103651. [PMID: 37688707 DOI: 10.1007/s11356-023-29614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
This paper describes the process of extracting ethanol from Jatropha curcas and its various blending effects on spark-ignited engine performance for environmental sustainability. Alternatives to conventional fuel sources have to be found because of the depletion of fossil fuels and stringent regulations. Every day, the growing population and improved transportation increase the energy demand. Bioethanol is an effective substitute for gasoline and SI engine diesel. Worldwide, passenger cars typically blend 10% bioethanol with gasoline. Some nations, like India, have stated plans to blend 20% bioethanol with gasoline starting shortly. From leftover jatropha deoiled cake (JDC), bioethanol was produced utilizing the fermentation and vacuum distillation methods. Four different blends were prepared on a volumetric basis at different engine speeds at a constant compression ratio of 10:1 and the wide-open throttle was tested for various performances and emissions. Bioethanol enrichments reduce CO and CO2 emissions but increase nitrogen oxide emissions. JDCE 15 was found to have the best engine performance out of all the fuel blends tested. This study suggests that, if NOx emission reduction measures are carried out, JDC can be used as a source for the manufacturing of second-generation bioethanol.
Collapse
Affiliation(s)
- Minal P Deshmukh
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India.
| | - Ashwini Pande
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Vishnu Choudhari
- School of Health Sciences and Technology, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Dhanashri S Pendse
- School of Chemical Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| |
Collapse
|
2
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
3
|
Gholipour A, Sadegheih A, Mostafaeipour A, Fakhrzad MB. Designing an optimal multi-objective model for a sustainable closed-loop supply chain: a case study of pomegranate in Iran. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023; 26:1-35. [PMID: 36687734 PMCID: PMC9838481 DOI: 10.1007/s10668-022-02868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The competitive environment in the global market makes most countries look for better ways to solve their problems. Food waste is the largest concern facing the food security of the world. Not paying attention to process of pomegranate wastes, such as separating the peel from the other parts and ignoring the cost of using artificial intelligence for pest control in gardens and the cost of maintaining the processed products are the gaps of previous researches. To cope with this challenge, recent studies have presented sustainable closed-loop supply chains (SCLSCs) as a strategic approach and a competitive advantage. The present study distinguishes itself from other studies by using the artificial intelligence technology in a supply chain along with the reverse logistics section, i.e., waste recycling. This paper proposes a design for a CLSC pomegranates. The corresponding logistics network is designed for several periods and covers manufacturers, distribution centers, customers, factories, recycling centers (compost centers), and compost end user (compost markets). Using reverse logistics, the wasted pomegranates are also converted into recycled products including ethanol, as an automotive fuel and a renewable energy, and a type of compost processed as an organic fertilizer. The goal of proposed model is to minimize the costs of supply chains, reduce the supply risks involved, and increase the profits for gardeners and investors in the public and non-profit agriculture sectors in Iran. The first pareto solution is 1,869,908.962, 2172.638 and 65.926, and the CPU time is 412 Ms. The results show a rise in the maximum supply risk occurs in the total cost and risk but a reduction in the accountability of the network and also an increase in the disruption period findings in increased total cost and risk of the network, while it first increases and then decreases the accountability.
Collapse
Affiliation(s)
- Ansar Gholipour
- Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Ahmad Sadegheih
- Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Ali Mostafaeipour
- Department of Industrial Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | | |
Collapse
|
4
|
Arun KB, Madhavan A, Anoopkumar AN, Surendhar A, Liz Kuriakose L, Tiwari A, Sirohi R, Kuddus M, Rebello S, Kumar Awasthi M, Varjani S, Reshmy R, Mathachan Aneesh E, Binod P, Sindhu R. Integrated biorefinery development for pomegranate peel: Prospects for the production of fuel, chemicals and bioactive molecules. BIORESOURCE TECHNOLOGY 2022; 362:127833. [PMID: 36029981 DOI: 10.1016/j.biortech.2022.127833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Current experimental evidence has revealed that pomegranate peel is a significant source of essential bio compounds, and many of them can be transformed into valorized products. Pomegranate peel can also be used as feedstock to produce fuels and biochemicals. We herein review this pomegranate peel conversion technology and the prospective valorized product that can be synthesized from this frequently disposed fruit waste. The review also discusses its usage as a carbon substrate to synthesize bioactive compounds like phenolics, flavonoids and its use in enzyme biosynthesis. Based on reported experimental evidence, it is apparent that pomegranate peel has a large number of applications, and therefore, the development of an integrated biorefinery concept to use pomegranate peel will aid in effectively utilizing its significant advantages. The biorefinery method displays a promising approach for efficiently using pomegranate peel; nevertheless, further studies should be needed in this area.
Collapse
Affiliation(s)
- K B Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - A Surendhar
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India
| | - Laya Liz Kuriakose
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201 301, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, 11 Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mohammed Kuddus
- Department of Biochemistry, University of Hail, Kingdom of Saudi Arabia
| | - Sharrel Rebello
- School of Food Science and Technology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689 122, Kerala, India
| | - Embalil Mathachan Aneesh
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India.
| |
Collapse
|
5
|
Zhang X, Zhou Y, Xiong W, Wei W, Jiang W. Co-production of xylose, lignin, and ethanol from eucalyptus through a choline chloride-formic acid pretreatment. BIORESOURCE TECHNOLOGY 2022; 359:127502. [PMID: 35724907 DOI: 10.1016/j.biortech.2022.127502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A choline chloride-formic acid (ChCl-FA) pretreatment followed by enzymatic hydrolysis and fermentation were developed in this work for co-produce bioethanol, xylose, and lignin from eucalyptus. Results showed that ChCl-FA pretreatment can simultaneously degrade the xylan (∼95.2%) and lignin (∼74.4%) in eucalyptus, and obtained the pretreated eucalyptus having high glucan content and a numbers of cracks and holes, which was conducive to follow-up cellulase attacking. The hydrolysis experiments showed the maximum yield of glucose of 100 g eucalyptus was 35.3 g, which was equivalent to 90.3% of glucan in eucalyptus feedstock. The fermentation of enzymatic hydrolysate finally achieved the ethanol yield of 16.5 g, which corresponded to 74.5% theoretical ethanol yield from initial glucan in eucalyptus. In addition, 12.1 g xylose and 23.9 g lignin also could be obtained in pretreated liquid or/and hydrolysis residue, which represented for 61.4% xylan and 80.7% lignin in eucalyptus feedstock, respectively.
Collapse
Affiliation(s)
- Xiaohua Zhang
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yaohong Zhou
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanming Xiong
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Weikun Jiang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology/Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
6
|
Baptista M, Domingues L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnol Adv 2022; 60:108027. [PMID: 35952960 DOI: 10.1016/j.biotechadv.2022.108027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is widely used for several biotechnological applications, mainly due to its thermotolerance, high growth rate, and ability to metabolise a wide range of sugars. These cell traits are strategic for lignocellulosic biomass valorisation and strain diversity prompts the development of robust chassis, either with improved tolerance to lignocellulosic inhibitors or ethanol. This review summarises bioethanol and value-added chemicals production by K. marxianus from different lignocellulosic biomasses. Moreover, metabolic engineering and process optimization strategies developed to expand K. marxianus potential are also compiled, as well as studies reporting cell mechanisms to cope with lignocellulosic-derived inhibitors. The main lignocellulosic-based products are bioethanol, representing 71% of the reports, and xylitol, representing 17% of the reports. K. marxianus also proved to be a good chassis for lactic acid and volatile compounds production from lignocellulosic biomass, although the literature on this matter is still scarce. The increasing advances in genome editing tools and process optimization strategies will widen the K. marxianus-based portfolio products.
Collapse
Affiliation(s)
- Marlene Baptista
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
7
|
Deshmukh M, Pande A, Marathe A. Different particle size study of castor deoiled cake for biofuel production with an environmental sustainability perspective. Heliyon 2022; 8:e09710. [PMID: 35756129 PMCID: PMC9213708 DOI: 10.1016/j.heliyon.2022.e09710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Agro-industrial waste material such as non-edible deoiled Castor bean cake (CBC) is one of the most abundant sources for bioethanol demonstrating the feasibility of utilizing bioethanol as commercial biofuel. This is an alternative to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. The CBC was pretreated with the help of thionyl chloride at a temperature of 35 °C for residence time 25 min. Subsequently, CBC substrate obtained from pretreatment was subjected to enzymatic hydrolysis with T. viride concentration varying from 0.5 to 5 g L−1 at 35 °C, pH 6 for 48 h. Under optimized conditions the process integrating pretreatment followed by enzymatic hydrolysis for 48 h at 35 °C with pH 7 resulted in 76 g L−1 of reducing sugars from 100 g CBC. The obtained sugar was further fermented at 30 °C for 72 h with saccharomyces cerevisiae as a fermenting media which yields 37.5 g L−1 of bioethanol. A study of different particle sizes of CBC with BSS-5, BSS-10, BSS-20 was done for efficient enzymatic hydrolysis and fermentation into bioethanol. On a pilot-scale 375 g L−1 of bioethanol was obtained from 1 kg of CBC with the same reaction conditions. The present study demonstrates optimized solid: liquid ratio 1:2 for hydrolysis, fermentation process, and the production cost for bioethanol per L. Figure S1 represents graphical abstract for the production of bioethanol from CBC in supplementary information.
Collapse
Affiliation(s)
- Minal Deshmukh
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Ashwini Pande
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Anant Marathe
- Shree Hanuman Vyayam Prasarak Mandal, Near Shri Ekvira Devi Temple Shree H. V. P. Mandal, Amravati, 444605, India
| |
Collapse
|
8
|
Saeed S, Samer M, Mohamed MSM, Abdelsalam E, Mohamed YMA, Abdel-Hafez SH, Attia YA. Implementation of graphitic carbon nitride nanomaterials and laser irradiation for increasing bioethanol production from potato processing wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34887-34897. [PMID: 35040058 DOI: 10.1007/s11356-021-18119-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 05/09/2023]
Abstract
Agricultural and agro-industrial wastes (e.g., potato peel waste) are causing severe environmental problems. The processes of pretreatment, saccharification, and fermentation are the major obstacles in bioethanol production from wastes and must be overcome by efficient novel techniques. The effect of exposing the fungi (yeast) Saccharomyces cerevisiae to laser source with the addition of graphitic carbon nitride nanosheets (g-C3N4) with different concentrations on bioethanol production was investigated through the implementation of a batch anaerobic system and using potato peel waste (PPW). Dichromate test was implemented as quantitative analysis for quantification of the bioethanol yield. The benefits of this test were the appearance of green color indicating the identification of ethanol (C2H5OH) by bare eye and the ease to calculate the bioethanol yield through UV-visible spectrophotometry. The control sample (0.0 ppm of g-C3N4) showed only a 4% yield of bioethanol; however, by adding 150 ppm to PPW medium, 22.61% of ethanol was produced. Besides, laser irradiations (blue and red) as influencing parameters were studied with and without the addition of g-C3N4 nanomaterials aiming to increase the bioethanol. It was determined that the laser irradiation can trigger the bioethanol production (in case of red: 13.13% and in case of blue: 16.14% yields, respectively) compared to the control sample (in absence of g-C3N4). However, by adding different concentrations of g-C3N4 nanomaterials from 5 to 150 ppm, the bioethanol yield was increased as follows: in case of red: 56.11% and, in case of blue: 56.77%, respectively. It was found that using fungi and exposing it to the blue laser diode source having a wavelength of 450 nm and a power of 250 mW for a duration of 30 min with the addition of 150 mg L-1 of g-C3N4 nanomaterials delivered the highest bioethanol yield from PPW.
Collapse
Affiliation(s)
- Samar Saeed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mohamed Samer
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Essam Abdelsalam
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Yasser M A Mohamed
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Shams H Abdel-Hafez
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
9
|
Fetyan NAH, El-Sayed AEKB, Ibrahim FM, Attia YA, Sadik MW. Bioethanol production from defatted biomass of Nannochloropsis oculata microalgae grown under mixotrophic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2588-2597. [PMID: 34374017 DOI: 10.1007/s11356-021-15758-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the economic feasibility and environmental sustainability of microalgal bioethanol production, a nontoxic, copious agricultural waste, sugarcane bagasse aqueous extract (SBAE) was used for cultivating Nannochloropsis oculata microalga (NNO-1 UTEX Culture LB 2164) as potential sources of substitutes for traditional nutrition to reduce the costs in cultivation through acid digestion and enzymatic treatment before being fermented by Saccharomyces cerevisiae (NRRLY-2034). The primary target of this research was to find out the ethanol from hydrolysate of the defatted biomass of N. oculata grown mixotrophically on SBAE and CO2 as carbon sources. For acid hydrolysis (AH), the highest carbohydrate yield 252.84 mg/g DW has been obtained with 5.0% (v/v) H2SO4 at 121 °C for 15 min for defatted biomass cultivated mixotrophically on sugarcane bagasse aqueous extract (SBAE) regarding 207.41 mg/g DW for defatted biomass cultivated autotrophically (control treatment). Whereas, the highest levels of reducing sugars has been obtained with 4.0% (v/v) H2SO4 157.47±1.60 mg/g DW for defatted biomass cultivated mixotrophically compared with 135.30 mg/g DW for the defatted control treatment. The combination of acid hydrolysis 2.0% (v/v) H2SO4 followed by enzymatic treatment (AEH) increased the carbohydrate yields to 268.53 mg/g DW for defatted biomass cultivated mixotrophically on SBAE regarding 177.73 mg/g DW for the defatted control treatment. However, the highest levels of reducing sugars have been obtained with 3.0% (v/v) H2SO4 followed by enzyme treatment that gave 232.39±1.77 for defatted biomass cultivated mixotrophically on SBAE and 150.75 mg/g DW for the defatted control treatment. The sugar composition of the polysaccharides showed that glucose was the principal polysaccharide sugar (60.7-62.49%) of N. oculata defatted biomass. Fermentation of the hydrolysates by Saccharomyces cerevisiae for the acid pretreated defatted biomass samples gave ethanol yield of 0.86 g/L (0.062 g/g sugar consumed) for control and 1.17 g/L (0.069 g/g sugar consumed) for SBAE mixotrophic. Whereas, the maximum ethanol yield of 6.17±0.47 g/L (0.26±0.11 g/g sugar consumed) has been obtained with samples from defatted biomass grown mixotrophically (SBAE mixotrophic) pretreated with acid coupled enzyme hydrolysis.
Collapse
Affiliation(s)
- Nashwa A H Fetyan
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | | | - Fatma M Ibrahim
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| | - Mahmoud W Sadik
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
10
|
El-Shamy S, Farag MA. Novel trends in extraction and optimization methods of bioactives recovery from pomegranate fruit biowastes: Valorization purposes for industrial applications. Food Chem 2021; 365:130465. [PMID: 34243129 DOI: 10.1016/j.foodchem.2021.130465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Pomegranate biowastes present potential economic value worldwide owing to their several health benefits mediated by a complex mixture of unique bioactives. The exploitation of these bioactives has motivated the exploration of eco-friendly, efficient, and cost-effective extraction techniques to maximize their recovery. The current review aims to provide updated technical information about bioactives extraction mechanisms from pomegranate wastes (seeds and peel), their advantages and disadvantages, and factors towards optimization. A comparative overview of the modern green extraction techniques viz., supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, and eutectic solvent mixture as alternatives to conventional extraction methods for seeds and peel is presented. Approaches focused on biowastes modification for properties improvement are also discussed. Such comprehensive review shall provide the best valorization practices of pomegranate biowastes and its application in food and non-food areas focusing on original methods, innovation, protocols, and development to be considered for other fruit biowastes.
Collapse
Affiliation(s)
- Sherine El-Shamy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
11
|
Ntaikou I, Siankevich S, Lyberatos G. Effect of thermo-chemical pretreatment on the saccharification and enzymatic digestibility of olive mill stones and their bioconversion towards alcohols. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24570-24579. [PMID: 32557020 DOI: 10.1007/s11356-020-09625-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the effect of thermo-chemical pretreatment on the enhancement of enzymatic digestibility of olive mill stones (OMS), as well as its possible valorisation via bioconversion of the generated free sugars to alcohols. Specifically, the influence of parameters such as reaction time, temperature, type and concentration of dilute acids and/or bases, was assessed during the thermo-chemical pretreatment. The hydrolysates and the solids remaining after pretreatment, as well as the whole pretreated slurries, were further evaluated as potential substrates for the simultaneous production of ethanol and xylitol via fermentation with the yeast Pachysolen tannophilus. The digestibility and overall saccharification of OMS were considerably enhanced in all cases, with the maximum enzymatic digestibility observed for dilute sodium hydroxide (almost 4-fold) which also yielded the highest total saccharification yield (91% of the total OMS carbohydrates). Ethanol and xylitol yields from the untreated OMS were 28 g/kg OMS and 25 g/kg OMS, respectively, and were both significantly enhanced by pretreatment. The highest ethanol yield was 79 g/kg OMS and was achieved by the alkali pretreatment and separate fermentation of hydrolysates and solids, whereas the highest xylitol yield was 49 g/kg OMS and was obtained by pretreatment with sulphuric acid and separate fermentation of hydrolysates and solids.
Collapse
Affiliation(s)
- Ioanna Ntaikou
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece.
| | - Sviatlana Siankevich
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece
- Embion Technologies SA, Chemin de la Dent-d'Oche 1 A, Ecublens VD, 1024, Vaud, Switzerland
| | - Gerasimos Lyberatos
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece
- School of Chemical Engineering Sciences, National Technical University of Athens, GR 15780, Athens, Greece
| |
Collapse
|
12
|
Aristizábal-Marulanda V, Solarte-Toro JC, Cardona Alzate CA. Study of biorefineries based on experimental data: production of bioethanol, biogas, syngas, and electricity using coffee-cut stems as raw material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24590-24604. [PMID: 32594433 DOI: 10.1007/s11356-020-09804-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Energy-driven biorefineries can be designed considering biotechnological and thermochemical conversion pathways. Nevertheless, energy and environmental comparisons are necessary to establish the best way to upgrade lignocellulosic biomass and set the requirements of these processes in different scenarios. This paper aims to evaluate experimentally a biorefinery producing energy vectors using coffee-cut stems (CCS) as feedstock. The obtained yields were the basis for energy and environmental analysis, in two different biorefinery scenarios: (i) production of bioethanol and biogas and (ii) production of syngas and electricity. The energy results indicated that the overall energy efficiency calculated in the first scenario was only 9.15%. Meanwhile, the second biorefinery configuration based on thermochemical routes presented an energy efficiency value of 70.89%. This difference was attributed to the higher consumption of utilities in the biorefinery based on biotechnological routes. The environmental results showed that the impact category of climate change for the first biorefinery (i.e., 0.0193 kg CO2 eq./MJ) had a lower value than that of the second process (i.e., 0.2377 kg CO2 eq./MJ). Thus, the biorefinery based on the biotechnological route presented a better environmental performance. Additionally, the results for both biorefineries allowed concluding that the inclusion of by-products and co-products in the calculation of the environmental analysis can dramatically affect the results.
Collapse
Affiliation(s)
- Valentina Aristizábal-Marulanda
- Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Km 07 vía al Magdalena, Zip Code: 170003, Manizales, Caldas, Colombia
- Facultad de Tecnologías, Escuela de Tecnología Química, Grupo Desarrollo de Procesos Químicos, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan Camilo Solarte-Toro
- Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Km 07 vía al Magdalena, Zip Code: 170003, Manizales, Caldas, Colombia
| | - Carlos Ariel Cardona Alzate
- Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Universidad Nacional de Colombia sede Manizales, Km 07 vía al Magdalena, Zip Code: 170003, Manizales, Caldas, Colombia.
| |
Collapse
|
13
|
Dhande DY, Sinaga N, Dahe KB. Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon 2021; 7:e06380. [PMID: 33748464 PMCID: PMC7969905 DOI: 10.1016/j.heliyon.2021.e06380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
This work focusses on a novel technique of producing bioethanol from fermented pomegranate fruits waste by using Saccharomyces cerevisiae, commonly known as baker's yeast. Four different blends of bioethanol, namely PE10, PE15, PE20, and PE25 were experimented at various operating speeds. It was inferred that the addition of ethanol enhanced the consumption of fuel as well as braking capacity. However, thermal performance was observed to be declined. PE15 blend exhibited optimum brake thermal efficiency at full load condition when compared with unleaded fuel. Brake specific fuel consumption of PE15 was noticed to be lower at different operating speeds among all the blends. Oxides of nitrogen as well as carbon dioxide emissions were increased as the proportion of ethanol in pure fuel was increased. Hydrocarbon and carbon monoxide emissions were reduced, while increasing the ratio of ethanol relative to pure gasoline, except PE10 blend. The combustion characteristics were also studied. Lower value of coefficient of variation revealed stable combustion. This study conclude that PE15 can be used as an alternative fuel.
Collapse
Affiliation(s)
- D Y Dhande
- Department of Mechanical Engineering, AISSMS College of Engineering, Pune, Maharashtra State, 411001, India
| | - Nazaruddin Sinaga
- Department of Mechanical Engineering, Diponegoro University, Semarang, 50275, Indonesia
| | - Kiran B Dahe
- Department of Mechanical Engineering, AISSMS College of Engineering, Pune, Maharashtra State, 411001, India
| |
Collapse
|
14
|
Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 2021; 26:molecules26030753. [PMID: 33535536 PMCID: PMC7867074 DOI: 10.3390/molecules26030753] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
As the need for non-renewable sources such as fossil fuels has increased during the last few decades, the search for sustainable and renewable alternative sources has gained growing interest. Enzymatic hydrolysis in bioethanol production presents an important step, where sugars that are fermented are obtained in the final fermentation process. In the process of enzymatic hydrolysis, more and more new effective enzymes are being researched to ensure a more cost-effective process. There are many different enzyme strategies implemented in hydrolysis protocols, where different lignocellulosic biomass, such as wood feedstocks, different agricultural wastes, and marine algae are being used as substrates for an efficient bioethanol production. This review investigates the very recent enzymatic hydrolysis pathways in bioethanol production from lignocellulosic biomass.
Collapse
|
15
|
Usmani Z, Sharma M, Awasthi AK, Sivakumar N, Lukk T, Pecoraro L, Thakur VK, Roberts D, Newbold J, Gupta VK. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. BIORESOURCE TECHNOLOGY 2021; 322:124548. [PMID: 33380376 DOI: 10.1016/j.biortech.2020.124548] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Growing concerns around the generation of biomass waste have triggered conversation around sustainable utilization of these seemingly waste materials as feedstock towards energy generation and production of chemicals and other value-added products. Thus, biotechniques such as utilization of microbes and enzymes derived thereof have become important avenues for green pretreatment and conversion of biomass wastes. Although the products of these bioconversions are greener at an overall level, their consumption and utilization still impact the environment. Hence it is important to understand the overall impact from cradle to grave through lifecycle assessment (LCA) techniques and find avenues of process optimization and better utilization of all the materials and products involved. Another factor to consider is overall cost optimization to make the process economically feasible, profitable and increase industrial adoption. This review brings forward these critical aspects to provide better understanding for the advancement of bioeconomy.
Collapse
Affiliation(s)
- Zeba Usmani
- Laboratory of Lignin Biochemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh 173101, India
| | | | - Nallusamy Sivakumar
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Muscat, Oman
| | - Tiit Lukk
- Laboratory of Lignin Biochemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Dave Roberts
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - John Newbold
- Dairy Research Centre, Scotland's Rural College (SRUC), Dumfries, UK
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
16
|
Hu M, Chen X, Huang J, Du J, Li M, Yang S. Revitalizing the ethanologenic bacterium Zymomonas mobilis for sugar reduction in high-sugar-content fruits and commercial products. BIORESOUR BIOPROCESS 2021; 8:119. [PMID: 34873566 PMCID: PMC8637514 DOI: 10.1186/s40643-021-00467-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
The excessive consumption of sugars can cause health issues. Different strategies have been developed to reduce sugars in the diets. However, sugars in fruits and commercial products may be difficult to reduce, limiting their usage among certain populations of people. Zymomonas mobilis is a generally recognized as safe (GRAS) probiotic bacterium with the capability to produce levan-type prebiotics, and thrives in high-sugar environments with unique characteristics to be developed for lignocellulosic biofuel and biochemical production. In this study, the sugar reduction capabilities of Z. mobilis ZM4 were examined using two fruits of pear and persimmon and three high-sugar-content commercial products of two pear pastes (PPs) and one Chinese traditional wine (CTW). Our results demonstrated that Z. mobilis ZM4 can utilize sugars in fruits with about 20 g/L ethanol and less than 5 g/L sorbitol produced within 22 h using pears, and about 45 g/L ethanol and 30 g/L sorbitol produced within 34 h using persimmons. When PPs made from pears were used, Z. mobilis can utilize nearly all glucose (ca. 60 g/L) and most fructose (110 g/L) within 100 h with 40 ~ 60 g/L ethanol and more than 20 g/L sorbitol produced resulting in a final sorbitol concentration above 80 g/L. In the high-sugar-content alcoholic Chinese traditional wine, which contains mostly glucose and ethanol, Z. mobilis can reduce nearly all sugars with about 30 g/L ethanol produced, resulting in a final ethanol above 90 g/L. The ethanol yield and percentage yield of Z. mobilis in 50 ~ 60% CTW were 0.44 ~ 0.50 g/g and 86 ~ 97%, respectively, which are close to its theoretical yields-especially in 60% CTW. Although the ethanol yield and percentage yield in PPs were lower than those in CTW, they were similar to those in fruits of pears and persimmons with an ethanol yield around 0.30 ~ 0.37 g/g and ethanol percentage yield around 60 ~ 72%, which could be due to the formation of sorbitol and/or levan in the presence of both glucose and fructose. Our study also compared the fermentation performance of the classical ethanologenic yeast Saccharomyces cerevisiae BY4743 to Z. mobilis, with results suggesting that Z. mobilis ZM4 had better performance than that of yeast S. cerevisiae BY4743 given a higher sugar conversion rate and ethanol yield for sugar reduction. This work thus laid a foundation for utilizing the advantages of Z. mobilis in the food industry to reduce sugar concentrations or potentially produce alcoholic prebiotic beverages. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40643-021-00467-2.
Collapse
Affiliation(s)
- Mimi Hu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiangyu Chen
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Ju Huang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Du
- China Biotech Fermentation Industry Association, Beijing, 100833 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang, China
| | - Shihui Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
17
|
Hasan Ba Hamid HS, Ku Ismail KS. Optimization of enzymatic hydrolysis for acid pretreated date seeds into fermentable sugars. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|