1
|
Chiu CY, Hsieh NC, Cheng LY, Lin W, Lin WY, Wei Y. Impact of keratin subfractions on the ultrafine particles filtration of sustainable electrospun human hair keratin/PVA nanofibers. Int J Biol Macromol 2025:144547. [PMID: 40409647 DOI: 10.1016/j.ijbiomac.2025.144547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/11/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Ultrafine particulate matter, especially particles below 100 nm, poses severe health risks due to their deep penetration into pulmonary regions and systemic circulation, emphasizing the need for sustainable and effective air filtration technologies. Conventional air filtration systems often face limitations in capturing these particles efficiently while maintaining low airflow resistance. A suggested solution lies in the use of bimodal nanofiber architectures, which combine coarse and fine fiber populations to enhance particle capture while preserving breathability. In this study, we proposed to develop electrospun nanofiber air filters using keratin extracted from human hair and blended with polyvinyl alcohol (PVA). By varying the ratios of Keratin-Associated Proteins (KAPs) and Keratin Intermediate Filaments (KIFs), we investigated how their distinct amino acid compositions and electrostatic properties influence fiber morphology, mechanical performance, and filtration efficiency. KAPs, rich in negatively charged and thiol-containing residues, enhanced ultrafine particle capture through electrostatic interactions and Brownian diffusion. KIFs, dominated by hydrophobic and structural amino acids, reinforced fiber rigidity and promoted size-based filtration via interception and inertial impaction. Filters fabricated with 10/0 (pure KAPs) and 3/7 KAPs/KIFs ratios exhibited the highest Quality Factor (QF), balancing low-pressure drop with effective nanoparticle removal. This performance was attributed to synergistic effects from enhanced surface charge, optimized fiber packing, and the slip effect facilitated by bimodal fiber diameters. These results establish keratin subfraction engineering as a potential strategy for designing sustainable, high-performance air filtration materials targeting ultrafine particulate pollution.
Collapse
Affiliation(s)
- Cheng-Yang Chiu
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Nien-Chen Hsieh
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Lin-Yeh Cheng
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei 106, Taiwan
| | - Wei Lin
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Wen-Yinn Lin
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 106, Taiwan.
| |
Collapse
|
2
|
Khatoon A, Siddiqui S, Haq N. Cellulose -Polyvinylalcohol supported magnetic nanocomposites from lentil husk for sequestration of cationic dyes from the aqueous solution: Kinetics, isotherm and reusability studies. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104503. [PMID: 39892219 DOI: 10.1016/j.jconhyd.2025.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
The study emphasize on the synthesis of eco-friendly cellulose based magnetic nanocomposite derived from Lens cullnaris husk and Poly Vinyl Alcohol (Fe3O4@LENT/PVA) for the adsorption of Crystal Violet, Methylene Blue and Malachite Green Dye. The structural and functional morphology was determined by SEM-EDAX analysis and FTIR. The crystalline of Fe3O4@LENT/PVA was analyzed by XRD and pore size was determined by BET. The surface area of nanocellulose Fe3O4@LENT/PVA was found to be 22.308 m2/g and the pore volume of 0.074cm3/g. The Fe3O4@LENT/PVA nanocomposites show successful adsorption of CV, MB and MG in 120 min equilibrium time at pH 7 for CV and 8 for MB and MG respectively. The Fe3O4@LENT/PVA nanocomposites was best fitted Langmuir isotherm and follows pseudo 2nd order kinetics with intra particle as rate controlling mechanism. The nanocellulose Fe3O4@LENT/PVA composite shows good monolayer adsorption capacity in the order of CV(357 mg/g) > MB(112.35 mg/g) > MG(111.11 mg/g). Thermodynamic study reveals the process is endothermic and spontaneous in nature with ΔG0 value less than 20KJ mol-1 at respective temperatures indicating Physiosorption. The nano-cellulose Fe3O4@LENT/PVA composite can be effectively desorb dyes by 0.1 M NaOH. The nanocellulose Fe3O4@LENT/PVA composite proves to be an effective adsorbent showing regeneration ability upto five times for all the dyes.
Collapse
Affiliation(s)
- Afsana Khatoon
- Department of Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj 211007, U.P., India.
| | - Shaziya Siddiqui
- Department of Chemistry, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj 211007, U.P., India.
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia..
| |
Collapse
|
3
|
Radoor S, Kassahun SK, Kim H. Selective adsorption of cationic dye by κ-carrageenan-potato starch bio-hydrogel: Kinetics, isotherm, and thermodynamic studies. Int J Biol Macromol 2024; 281:136377. [PMID: 39383908 DOI: 10.1016/j.ijbiomac.2024.136377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
An eco-friendly κ-carrageenan/potato starch bio-hydrogel is designed for the efficient removal of methylene blue (MB) dye from water. The incorporation of potato starch was successfully confirmed through XRD, FT-IR, and SEM analysis, while TGA highlighted the hydrogel's thermal stability. Batch adsorption experiments demonstrated excellent MB removal efficiency, with a maximum adsorption capacity of 116.1 mg/g under optimal conditions (initial dye concentration: 100 mg/L, contact time: 180 min, temperature: 20 °C, adsorbent dosage: 1.6 g/L, and pH: 11). FT-IR analysis indicated that electrostatic interactions and hydrogen bonding primarily govern the adsorption process. The adsorption followed pseudo-second-order kinetics and fitted well with the Langmuir isotherm model. Thermodynamic studies revealed that the adsorption was exothermic and spontaneous. A key feature of this bio hydrogel is its selective affinity for the cationic dye MB, in a mixture with Acid Orange (AO) and other cationic dyes (Rhodamine B (Rh B) and crystal violet (CV)). The adsorbent also demonstrated impressive reusability, maintaining 93 % of its efficiency after five cycles, highlighting its potential for sustainable and cost-effective water treatment.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Shimelis Kebede Kassahun
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa 1000, Ethiopia
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
4
|
Zhou Y, Zhang X, He F, Liu K, Xia NN, Wu Q, Kong F. Starch-based self-assembled three-dimensional network nanostructure materials for sustainable cascade adsorption. Int J Biol Macromol 2024; 277:134355. [PMID: 39089543 DOI: 10.1016/j.ijbiomac.2024.134355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Toward the development of a sustainable utilization strategy for adsorption materials, a starch-based adsorbent starch-chitosan-tannic acid (St-CTS-TA) with a three-dimensional (3D) structure was fabricated in water via electrostatic and hydrogen bonding reactions between St, CTS, and TA without using toxic reducing agents or special instruments. St-CTS-TA demonstrated a high specific surface area of 37 m2/g as well as a mesoporous/macroporous distribution ranging from 30 to 80 nm, which enhanced the mass transfer of adsorbate and the exposure of catechol groups in TA. The Langmuir isotherm adsorption model revealed that the highest adsorption capacities of St-CTS-TA for Fe3+ and Co2+ were 1678.2 and 944.8 mg/g, respectively. Surprisingly, the specific surface area of St-CTS-TA increased from 37 to 87 and 42 m2/g after Fe3+ and Co2+ adsorption, respectively, and the resulting St-CTS-TA-Fe and St-CTS-TA-Co could continuously adsorb basic fuchsin (BF) and rhodamine B (RhB). The adsorption capacities of St-CTS-TA-Fe and St-CTS-TA-Co for BF/RhB were found to be 1854.79/401.19 mg/g and 2229.77/537.49 mg/g, respectively, based on the Langmuir isotherm adsorption model.
Collapse
Affiliation(s)
- Yujun Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fei He
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Nan Nan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
5
|
Qing S, Weng W, Dai Y, Li P, Ren Z, Zhang Y, Shi L, Li S. Structural characterization of glutaraldehyde crosslinked starch-based nanofibrous film and adsorption improvement for oyster peptide flavor. Int J Biol Macromol 2024; 277:133801. [PMID: 39013506 DOI: 10.1016/j.ijbiomac.2024.133801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
The inferior hydrophobicity and mechanical properties of starch-based nanofibrous films significantly restrict their practical application. In view of this, this study prepared octenylsuccinylated starch-pullulan nanofibrous films using electrospinning and glutaraldehyde (GTA) gas-phase crosslinking. After GTA crosslinking, the starch-based nanofibrous films remained white, randomly oriented, smooth, and droplet-free. As the crosslinking time increased from 0 h to 24 h, the mean fibrous diameter augmented from 157.34 nm to 238.66 nm, and the water contact angle rose from 24.30° to 52.49°. Meanwhile, their tensile strength and thermal stability grew, and the mean pore area and elongation at break abated with changes in function groups. The crosslinked starch-based nanofibrous films exhibited an enhanced adsorption capacity for alcohols, ethers, esters, hydrocarbons, and N-compounds of oyster peptides. Correlation analysis shows that the adsorption capacity of the starch-based nanofibrous films was positively correlated with mean fibrous diameter and water contact angle and negatively correlated with mean pore area. These results provide a theoretical basis for the practical application of crosslinked starch-based nanofibrous film materials in deodorization.
Collapse
Affiliation(s)
- Shiqin Qing
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yaolin Dai
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
6
|
Dong Y, Ghasemzadeh M, Khorsandi Z, Sheibani R, Nasrollahzadeh M. Starch-based hydrogels for environmental applications: A review. Int J Biol Macromol 2024; 269:131956. [PMID: 38692526 DOI: 10.1016/j.ijbiomac.2024.131956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Water sources have become extremely scarce and contaminated by organic and inorganic industrial and agricultural pollutants as well as household wastes. Poisoning water resources by dyes and metals is a problem because contaminated water can leak into subsurface and surface sources, causing serious contamination and health problems. Therefore, developing wastewater treatment technologies is valuable. Today, hydrogels have attracted considerable attention owing to their broad applications. Hydrogels are polymeric network compositions with significant water-imbibing capacity. Hydrogels have potential applications in diverse fields such as biomedical, personal care products, pharmaceuticals, cosmetics, and biosensors. They can be prepared by using natural (biopolymers) and synthetic polymers. Synthetic polymer-based hydrogels obtained from petrochemicals are not environmentally benign; thus, abundant plant-based polysaccharides are found as more suitable compounds for making biodegradable hydrogels. Polysaccharides with many advantages such as non-toxicity, biodegradability, availability, inexpensiveness, etc. are widely employed for the preparation of environmentally friendly hydrogels. Polysaccharides-based hydrogels containing chitin, chitosan, gum, starch (St), etc. are employed to remove pollutants, metals, and dyes. Among these, St has attracted a lot of attention. St can be mixed with other compounds to make hydrogels, which remove dyes and metal ions to variable degrees of efficiency. Although St has numerous advantages, it suffers from drawbacks such as low stability, low water solubility, and fast degradability in water which limit its application as an environmental adsorbent. As an effective way to overcome these weaknesses, various modification approaches to form starch-based hydrogels (SBHs) employing different compounds have been reported. The preparation methods and applications of SBH adsorbents in organic dyes, hazardous materials, and toxic ions elimination from water resources have been comprehensively discussed in this review.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | | | - Zahra Khorsandi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | | |
Collapse
|
7
|
Su W, Chang Z, E Y, Feng Y, Yao X, Wang M, Ju Y, Wang K, Jiang J, Li P, Lei F. Electrospinning and electrospun polysaccharide-based nanofiber membranes: A review. Int J Biol Macromol 2024; 263:130335. [PMID: 38403215 DOI: 10.1016/j.ijbiomac.2024.130335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc., thus improving the life quality. Compared with the evaluation of polysaccharide-based nanofiber membranes in a specific field, this paper comprehensively summarized the existing electrospinning technology and focused on the latest research progress about the application of polysaccharide-based nanofiber in different fields, represented by starch, chitosan, and cellulose. Finally, the benefits and defects of electrospun are discussed in brief, and the prospects for broadening the application of polysaccharide nanofiber membranes are presented for the glorious expectation dedicated to the progress of the eras.
Collapse
Affiliation(s)
- Weiyin Su
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zeyu Chang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuyu E
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yawen Feng
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Yao
- International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Meng Wang
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Yunshan Ju
- Lanzhou Biotechnique Development Co., Ltd., Lanzhou 730046, China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
8
|
Bekchanov D, Mukhamediev M, Yarmanov S, Lieberzeit P, Mujahid A. Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydr Polym 2024; 323:121397. [PMID: 37940289 DOI: 10.1016/j.carbpol.2023.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The present study provides an overview of scientific developments made in the last decade in the field of green adsorbents focusing on the modifications in natural polymers and their applications such as, wastewater treatment, and ion exchange. For this purpose, an introduction to the various methods of modifying natural polymers is first given, and then the properties, application, and future priorities of green adsorbents are also discussed. Methods of modification of natural polymers under homogeneous and heterogeneous conditions using modifiers with different properties are also described. Various methods for modifying natural polymers and the use of the obtained green adsorbents are reviewed. A comparison of the sorption properties of green adsorbents based on natural polymers and other adsorbents used in industry has also been carried out. With the participation of green adsorbents based on natural polymers, the properties of treated wastewaters having toxic metal ions, organic dyes, petroleum products, and other harmful compounds was analyzed. Future perspectives on green adsorbents based on natural polymers are as also highlighted.
Collapse
Affiliation(s)
- Davronbek Bekchanov
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Mukhtar Mukhamediev
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | - Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Adnan Mujahid
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
9
|
Gao Y, Cai P, Zhong L, Zhang R, Hou X, Ren X, Wang J, Chu X, Lu Y, Zhou Z. Chitosan-polyvinyl alcohol-diatomite hydrogel removes methylene blue from water. Int J Biol Macromol 2024; 254:127886. [PMID: 37926301 DOI: 10.1016/j.ijbiomac.2023.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Dye pollution in the aquatic environment can harm ecosystems and human health. Here, we developed a new green adsorbent by applying an improved drying process. Diatomite was embedded in a network structure formed between chitosan and polyvinyl alcohol without using any crosslinking agent to prepare chitosan-polyvinyl alcohol-diatomite hydrogel beads through alkali solidification. The beads were tested for removing a cationic dye (methylene blue (MB)) from water. The structure of the adsorbent beads was analysed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The adsorption capacity was investigated, and the results indicated excellent MB adsorption properties. The adsorbents had a rough surface and high swelling capacity of 66.9 g/g. The maximum MB adsorption capacity was 414.70 mg/g, and the adsorption followed the Freundlich isothermal and quasi-second-order kinetic models. The adsorption was an endothermic spontaneous process governed by both intra-particle and external diffusion processes. The proposed adsorption mechanisms involved hydrogen bonding and electrostatic interactions. These adsorbent beads have considerable application potentials owing to their high adsorption capacity, green composition, and non-polluting nature.
Collapse
Affiliation(s)
- Yanfei Gao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Pingxiong Cai
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 535000, China
| | - Lei Zhong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Ruixian Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xueyi Hou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiuxiu Ren
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Junzhong Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Xiaokun Chu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China
| | - Yanyue Lu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China.
| | - Zeguang Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of New Technology for Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
10
|
Jumnong K, Kongseng P, Maijan P, Suwanboon S, Chantarak S. Double-function ZnO/starch biodegradable hydrogel composite for methylene blue adsorption and photocatalytic degradation. Int J Biol Macromol 2023; 253:127533. [PMID: 37858654 DOI: 10.1016/j.ijbiomac.2023.127533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
An eco-friendly material for the removal of dyes from wastewater was developed. Biodegradable polymers (BP), cassava starch and poly(vinyl alcohol), were used to replace polyacrylamide. The hydrogel containing 50 wt% of BP (BP50) could absorb 34 times its dry weight of water. The hydrogel could adsorb Zn2+ and ZnO photocatalyst particles could be formed via a simple precipitation method. The incorporation of ZnO did not affect the adsorption efficiency of the ZnO/BP50 hydrogel composite towards methylene blue (MB). At initial concentrations (Co) below 4500 mg/g, the hydrogel composite removed ∼99 % of MB from solution in 3 h. The highest adsorption capacity of 1170 mg/g was obtained when Co was 6000 mg/g and at a dose of 0.10 g/20 mL. The hydrogel composite degraded 95 %-98 % of adsorbed MB at rates of 0.19 h-1 and 1.77 h-1 under UV irradiation and sunlight, respectively, with exposure times of 16 h for UV but only 2 h for sunlight. The material remained effective for at least 10 cycles of photodegradation under sunlight and removed 86 % of MB in solution on the 10th cycle. The composite also showed antibacterial activities and biodegradability in soil. These results indicated this material would not generate after-process toxic waste.
Collapse
Affiliation(s)
- Kanita Jumnong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyawan Kongseng
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pattarawadee Maijan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sumetha Suwanboon
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirinya Chantarak
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
11
|
Zhang X, Li Y, Zou W, Ding L, Chen J. Sorption enhancement of Cr(VI) from aqueous solution by polyaniline confined in three-dimensional network of composite porous hydrogel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92404-92416. [PMID: 37491493 DOI: 10.1007/s11356-023-28948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Hexavalent chromium Cr(VI) is a typical harmful pollutant, which is carcinogenic or mutagenic to aquatic animals and humans. In this study, sepiolite/humic acid/polyvinyl alcohol@ polyaniline (SC/HA/PVA@PANI) composite porous hydrogel adsorbent was synthesized by Pickering emulsion template in situ chemical oxidative polymerization for adsorption of Cr(VI) from aqueous solution. The in situ polymerization of aniline at the Pickering emulsion interface and the unique three-dimensional network structure of the hydrogel act as an effective "confinement" for the growth of the polymer. The porous structure of the material acts as a water channel, which effectively accelerates the binding of the adsorbate to the adsorption sites, and significantly improves the adsorption rate and adsorption capacity. The adsorption capacity of PANI for Cr(VI) confined in three-dimensional network of composite porous SC/HA/PVA@PANI hydrogel reached 1180.97 mg/g-PANI, which increased about 27-fold compared the adsorption capacity of pure PANI (43.48 mg/g). It is shown that the experimental design effectively avoids the agglomeration of PANI and improves its potential adsorption performance. In addition, the analysis of FESEM-EDX, FT-IR, and XPS spectra before and after adsorption confirmed that the main adsorption mechanisms of Cr(VI) on SC/HA/PVA@PANI included ion exchange, electrostatic attraction, and redox reaction. In conclusion, SC/HA/PVA@PANI has good stability and excellent adsorption performance, which is a new type of Cr(VI) ion adsorbent with great potential.
Collapse
Affiliation(s)
- Xuejiao Zhang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Yulin Li
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Wenjie Zou
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Li Ding
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China
| | - Jun Chen
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang road, Maanshan, 243000, People's Republic of China.
| |
Collapse
|
12
|
Li M, Zhang P, Wang Q, Yu N, Zhang X, Su S. Electrospinning Novel Sodium Alginate/MXene Nanofiber Membranes for Effective Adsorption of Methylene Blue. Polymers (Basel) 2023; 15:polym15092110. [PMID: 37177263 PMCID: PMC10180889 DOI: 10.3390/polym15092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Understanding how to develop highly efficient and robust adsorbents for the removal of organic dyes in wastewater is crucial in the face of the rapid development of industrialization. Herein, d-Ti3C2Tx nanosheets (MXene) were combined with sodium alginate (SA), followed by electrospinning and successive Ca2+-mediated crosslinking, giving rise to a series of SA/MXene nanofiber membranes (NMs). The effects of the MXene content of the NMs on the adsorption performance for methylene blue (MB) were investigated systemically. Under the optimum MXene content of 0.74 wt.%, SA/MXene NMs possessed an MB adsorption capacity of 440 mg/g, which is much higher than SA/MXene beads with the same MXene content, pristine MXene, or electrospinning SA NMs. Furthermore, the optimum SA/MXene NMs showed excellent reusability. After the adsorbent was reused ten times, both the MB adsorption capacity and removal rate could remain at 95% of the levels found in the fresh samples, which indicates that the electrospinning technique has great potential for developing biomass-based adsorbents with high efficiency.
Collapse
Affiliation(s)
- Meng Li
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Pingxiu Zhang
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Qianfang Wang
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Ningya Yu
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Xiaomin Zhang
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| | - Shengpei Su
- National and Local Joint Engineering Lab for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
13
|
Chang H, Zhao H, Qu F, Yan Z, Liu N, Lu M, Liang Y, Lai B, Liang H. State-of-the-art insights on applications of hydrogel membranes in water and wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Amin NAAM, Mokhter MA, Salamun N, Mohamad MFB, Mahmood WMAW. ANTI-FOULING ELECTROSPUN ORGANIC AND INORGANIC NANOFIBER MEMBRANES FOR WASTEWATER TREATMENT. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
15
|
Pan W, Liang Q, Gao Q. Preparation of hydroxypropyl starch/polyvinyl alcohol composite nanofibers films and improvement of hydrophobic properties. Int J Biol Macromol 2022; 223:1297-1307. [PMID: 36395934 DOI: 10.1016/j.ijbiomac.2022.11.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/19/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Starch-derived edible films have great potential as biodegradable food packaging and biomedical materials, in this study, we adopted a green method to prepare starch-based composite electrospun nanofibers films. The hydroxypropyl starches (HPS) were prepared to improve native starch solubility and properties, and a series of blend solutions were prepared with different HPS/polyvinyl alcohol (PVA) weight ratios. The comparison of the properties of HPS/PVA (HPA) nanofibers with different amylose contents were evaluated, and the fibers fabricated from hydroxypropyl high amylose starch (HP-HAS) had more continuous and homogeneous morphologies compared to the other starch fibers, it was also found that the addition of HP-HAS in the film has better mechanical properties than pure PVA film. Thus, to improve the hydrophobicity of the film, the HP-HAS/PVA (HPA(H)) nanofiber was selected for the hydrophobic study by the citric acid (CA) treatment. The hydrophobic surface was formed on the HPA(H) film by CA self-assembled coating with a water contact angle changed from 30.95° up to 100.74°. This study successfully prepared the modified starch/PVA composite nanofibers and established a simple method of self-assembled hydrophobic modification to improve water stability. Therefore, this green strategy is an alternative candidate in further study for food packaging and relative areas.
Collapse
Affiliation(s)
- Wenli Pan
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qian Liang
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China.
| |
Collapse
|
16
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Mir FQ, Hameed F, Sajad Y, Mukhdoomi B. Green and Non‐Conventional Materials for Membrane Synthesis: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202201195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fasil Qayoom Mir
- Department of Chemical Engineering National Institute of Technology Srinagar, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Faheem Hameed
- Department of Chemical Engineering National Institute of Technology Srinagar, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Yamir Sajad
- Department of Chemical Engineering National Institute of Technology Srinagar, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| | - Bushra Mukhdoomi
- Department of Chemical Engineering National Institute of Technology Srinagar, Hazratbal Srinagar, Jammu and Kashmir 190006 India
| |
Collapse
|
18
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers (Basel) 2022; 14:1594. [PMID: 35458343 PMCID: PMC9025395 DOI: 10.3390/polym14081594] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, nanofibers have come to be considered one of the sustainable routes with enormous applicability in different fields, such as wastewater treatment. Electrospun nanofibers can be fabricated from various materials, such as synthetic and natural polymers, and contribute to the synthesis of novel nanomaterials and nanocomposites. Therefore, they have promising properties, such as an interconnected porous structure, light weight, high porosity, and large surface area, and are easily modified with other polymeric materials or nanomaterials to enhance their suitability for specific applications. As such, this review surveys recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Asir, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Al Jamiah, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
19
|
Vatanpour V, Yavuzturk Gul B, Zeytuncu B, Korkut S, İlyasoğlu G, Turken T, Badawi M, Koyuncu I, Saeb MR. Polysaccharides in fabrication of membranes: A review. Carbohydr Polym 2022; 281:119041. [DOI: 10.1016/j.carbpol.2021.119041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
|
20
|
Liu YX, Zhong H, Li XR, Bao ZL, Cheng ZP, Zhang YJ, Li CX. Fabrication of attapulgite-based dual responsive composite hydrogel and its efficient adsorption for methyl violet. ENVIRONMENTAL TECHNOLOGY 2022; 43:1480-1492. [PMID: 33070707 DOI: 10.1080/09593330.2020.1838623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In this work, attapulgite (ATP)-based dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) composite hydrogel, P(NIPAM-co-AA)/ATP, was prepared by free radical polymerization. The prepared composite hydrogel was characterized via methods of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta potential analysis and Brunauer, Emmett, and Teller (BET) etc. The composite hydrogel showed pH and temperature sensitive behaviour, with lower critical solution temperature (LCST) of 35°C and highest swelling occurred at pH 8.0. The adsorption of methyl violet (MV) can be controlled by the hydrogel responsiveness, and 95.78% of MV can be removed at pH 8.0 and 35°C. The addition of a small amount of ATP (3 Wt%) can improve the swelling ratio and adsorption capacity. Kinetic analysis demonstrated that the experimental data were best fitted to the pseudo-second order model. Isotherm analysis showed that the equilibrium data followed Langmuir model with the adsorption capacity of 168.35 mg g-1. In addition, the composite hydrogel has high adsorption selectivity for cationic dyes, and MV-loaded hydrogel is easy to regenerate, which can be used for successive adsorption cycles. These results demonstrate that the composite hydrogel has potential application in dye wastewater treatment.
Collapse
Affiliation(s)
- Yi-Xin Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Hui Zhong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Xiao-Rong Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhuan-Li Bao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhi-Peng Cheng
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Yu-Jie Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Chun-Xiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
21
|
Development of multifunctional hydrogel composite based on poly(vinyl alcohol-g-acrylamide) for removal and photocatalytic degradation of organic dyes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Ihsanullah I, Bilal M, Jamal A. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents. CHEM REC 2022; 22:e202100312. [PMID: 35102677 DOI: 10.1002/tcr.202100312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 12/24/2022]
Abstract
Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd, University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Arshad Jamal
- Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
23
|
Chen J, Ghosh T, Ayranci C, Tang T. Bio‐cleaned lignin‐based carbon fiber and its application in adsorptive water treatment. J Appl Polym Sci 2021. [DOI: 10.1002/app.52054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiawei Chen
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Tanushree Ghosh
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
- Center for Earth Sciences Indian Institute of Science Bangalore India
| | - Cagri Ayranci
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Tian Tang
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
24
|
Sustainable Treatment of Food Industry Wastewater Using Membrane Technology: A Short Review. WATER 2021. [DOI: 10.3390/w13233450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water is needed for food processing facilities to carry out a number of tasks, including moving goods, washing, processing, and cleaning operations. This causes them to produce wastewater effluent, and they are typically undesirable since it contains a high volume of suspended solids, bacteria, dyestuffs, salts, oils, fats, chemical oxygen demand and biological oxygen demand. Therefore, treatment of food industry wastewater effluent is critical in improving process conditions, socio-economic benefits and our environmental. This short review summarizes the role of available membrane technologies that have been employed for food wastewater treatment and analyse their performance. Particularly, electrospun nanofiber membrane technology is revealed as an emerging membrane science and technology area producing materials of increasing performance and effectiveness in treating wastewater. This review reveals the challenges and perspectives that will assist in treating the food industry wastewater by developing novel membrane technologies.
Collapse
|
25
|
Polyethyleneimine grafted starch nanocrystals as a novel biosorbent for efficient removal of methyl blue dye. Carbohydr Polym 2021; 273:118579. [PMID: 34560983 DOI: 10.1016/j.carbpol.2021.118579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
In this paper, a novel biosorbent of SNCs-PEI was successfully prepared by grafting polyethylenimine (PEI) onto the starch nanocrystals (SNCs) using glutaraldehyde as a crosslinking agent. The optimal preparation conditions of SNCs-PEI were determined by the orthogonal experiments of the three-factor and three-level, and the SNCs-PEI was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The zeta potential of SNCs-PEI was +26.3 mV (pH 7), which had a good adsorption performance for the anionic dye methyl blue (MB). The adsorption kinetics and isotherm of MB by SNCs-PEI were studied. At the temperature of 25, 30 and 35 °C, its maximum adsorption capacity was 337.84, 377.36 and 383.14 mg g-1, respectively. The adsorption of MB by the SNCs-PEI was a spontaneous and endothermic process according to the thermodynamic analysis.
Collapse
|
26
|
Al Sharabati M, Abokwiek R, Al-Othman A, Tawalbeh M, Karaman C, Orooji Y, Karimi F. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. ENVIRONMENTAL RESEARCH 2021; 202:111694. [PMID: 34274334 DOI: 10.1016/j.envres.2021.111694] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) target the endocrine system by interfering with the natural hormones in the body leading to adverse effects on human and animal health. These chemicals have been identified as major polluting agents in wastewater effluents. Pharmaceuticals, personal care products, industrial compounds, pesticides, dyes, and heavy metals are examples of substances that could be considered endocrine active chemicals. In humans, these chemicals could cause obesity, cancer, Alzheimer's disease, autism, reproductive abnormalities, and thyroid problems. While in wildlife, dysfunctional gene expression could lead to the feminization of some aquatic organisms, metabolic diseases, cardiovascular risk, and problems in the reproductive system as well as its levels of hatchability and vitellogenin. EDCs could be effectively removed from wastewater using advanced technologies such as reverse osmosis, membrane treatment, ozonation, advanced oxidation, filtration, and biodegradation. However, adsorption has been proposed as a more promising and sustainable method for water treatment than any other reported technique. Increased attention has been paid to biodegradable polymers and their nano-composites as promising adsorbents for the removal of EDCs from wastewater. These polymers could be either natural, synthetic, or a combination of both. This review presents a summary of the most relevant cases where natural and synthetic biodegradable polymers have been used for the successful removal of EDCs from wastewater. It demonstrates the effectiveness of these polymers as favorable adsorbents for novel wastewater treatment technologies. Hitherto, very limited work has been published on the use of both natural and synthetic biodegradable polymers to remove EDCs from wastewater, as most of the studies focused on the utilization of only one type, either natural or synthetic. Therefore, this review could pave the way for future exploration of biodegradable polymers as promising and sustainable adsorbents for the removal of various types of pollutants from wastewater.
Collapse
Affiliation(s)
- Miral Al Sharabati
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Raed Abokwiek
- Materials Science and Engineering PhD Program, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, PR China
| | - Fatemeh Karimi
- Deparment of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
27
|
Easy-handling carbon nanotubes decorated poly(arylene ether nitrile)@tannic acid/carboxylated chitosan nanofibrous composite absorbent for efficient removal of methylene blue and congo red. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Abdulwahid AA, Alwattar AA, Haddad A, Alshareef M, Moore J, Yeates SG, Quayle P. An efficient reusable perylene hydrogel for removing some toxic dyes from contaminated water. POLYM INT 2021. [DOI: 10.1002/pi.6186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ali A Abdulwahid
- Chemistry Department, College of Science University of Basrah Basrah Iraq
| | - Aula A Alwattar
- Chemistry Department, College of Science University of Basrah Basrah Iraq
- Department of Chemistry University of Manchester Manchester UK
| | - Athir Haddad
- Chemistry Department, College of Science University of Basrah Basrah Iraq
- Department of Chemistry University of Manchester Manchester UK
| | - Mubark Alshareef
- Department of Chemistry University of Manchester Manchester UK
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Joshua Moore
- Department of Chemistry University of Manchester Manchester UK
| | | | - Peter Quayle
- Department of Chemistry University of Manchester Manchester UK
| |
Collapse
|
29
|
Bayat A, Tati A, Ahmadipouya S, Haddadi SA, Arjmand M. Electrospun chitosan/polyvinyl alcohol nanocomposite holding polyaniline/silica hybrid nanostructures: An efficient adsorbent of dye from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
31
|
Thamer BM, Aldalbahi A, Moydeen A M, Rahaman M, El-Newehy MH. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers (Basel) 2020; 13:E20. [PMID: 33374681 PMCID: PMC7793529 DOI: 10.3390/polym13010020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
Electrospun polymer nanofibers (EPNFs) as one-dimensional nanostructures are characterized by a high surface area-to-volume ratio, high porosity, large number of adsorption sites and high adsorption capacity. These properties nominate them to be used as an effective adsorbent for the removal of water pollutants such as heavy metals, dyes and other pollutants. Organic dyes are considered one of the most hazardous water pollutants due to their toxic effects even at very low concentrations. To overcome this problem, the adsorption technique has proven its high effectiveness towards the removal of such pollutants from aqueous systems. The use of the adsorption technique depends mainly on the properties, efficacy, cost and reusability of the adsorbent. So, the use of EPNFs as adsorbents for dye removal has received increasing attention due to their unique properties, adsorption efficiency and reusability. Moreover, the adsorption efficiency and stability of EPNFs in aqueous media can be improved via their surface modification. This review provides a relevant literature survey over the last two decades on the fabrication and surface modification of EPNFs by an electrospinning technique and their use of adsorbents for the removal of various toxic dyes from contaminated water. Factors affecting the adsorption capacity of EPNFs, the best adsorption conditions and adsorption mechanism of dyes onto the surface of various types of modified EPNFs are also discussed. Finally, the adsorption capacity, isotherm and kinetic models for describing the adsorption of dyes using modified and composite EPNFs are discussed.
Collapse
Affiliation(s)
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.M.T.); (M.M.A.); (M.R.); (M.H.E.-N.)
| | | | | | | |
Collapse
|
32
|
Yu M, Ji N, Wang Y, Dai L, Xiong L, Sun Q. Starch‐based nanoparticles: Stimuli responsiveness, toxicity, and interactions with food components. Compr Rev Food Sci Food Saf 2020; 20:1075-1100. [DOI: 10.1111/1541-4337.12677] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mengting Yu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Na Ji
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Yanfei Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Lei Dai
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Liu Xiong
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| | - Qingjie Sun
- College of Food Science and Engineering Qingdao Agricultural University Qingdao China
| |
Collapse
|
33
|
Mehrani Z, Ebrahimzadeh H, Moradi E, Yamini Y. Using three-dimensional poly (vinyl alcohol)/sodium hexametaphosphate nanofiber as a non-toxic and efficient nanosorbent for extraction and recovery of Lanthanide ions from aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|