1
|
Lynch VD, Sullivan JA, Flores AB, Xie X, Aggarwal S, Nethery RC, Kioumourtzoglou MA, Nigra AE, Parks RM. Large floods drive changes in cause-specific mortality in the United States. Nat Med 2025; 31:663-671. [PMID: 39753964 PMCID: PMC11835711 DOI: 10.1038/s41591-024-03358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/15/2024] [Indexed: 01/07/2025]
Abstract
Flooding greatly endangers public health and is an urgent concern as rapid population growth in flood-prone regions and more extreme weather events will increase the number of people at risk. However, an exhaustive analysis of mortality following floods has not been conducted. Here we used 35.6 million complete death records over 18 years (2001-2018) from the National Center for Health Statistics in the United States, highly resolved flood exposure data and a Bayesian conditional quasi-Poisson model to estimate the association of flooding with monthly county-level death rates for cancers, cardiovascular diseases, infectious and parasitic diseases, injuries, neuropsychiatric conditions and respiratory diseases up to 3 months after the flood. During the month of flooding, very severe heavy rain-related floods were associated with increased infectious disease (3.2%; 95% credible interval (CrI): 0.1%, 6.2%) and cardiovascular disease (2.1%; 95% CrI: 1.3%, 3.0%) death rates and tropical cyclone-related floods were associated with increased injury death rates (15.3%; 95% CrI: 12.4%, 18.1%). During the month of very severe tropical cyclone-related flooding, increases in injury death rate were higher for those ≥65 years old (24.9; 95% CrI: 20.0%, 29.8%) than for those aged <65 years (10.2%; 95% CrI: 6.6%, 13.8%) and for females (21.2%; 95% CrI: 16.3%, 26.1%) than for males (12.6%; 95% CrI: 9.1%,16.1%). Effective public health responses are critical now and with projected increased flood severity driven by climate change.
Collapse
Affiliation(s)
- Victoria D Lynch
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Jonathan A Sullivan
- School of Geography, Development & Environment, College of Social & Behavioral Sciences, University of Arizona, Tucson, AZ, USA
| | - Aaron B Flores
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Xicheng Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sarika Aggarwal
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Rachel C Nethery
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Anne E Nigra
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Robbie M Parks
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Zeydalinejad N, Javadi AA, Webber JL. Global perspectives on groundwater infiltration to sewer networks: A threat to urban sustainability. WATER RESEARCH 2024; 262:122098. [PMID: 39032334 DOI: 10.1016/j.watres.2024.122098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
While existing studies on sewer networks have explored topics such as surface water inflow, limited research has delved into groundwater infiltration (GWI). This study aims to fill this void by providing a comprehensive overview of quantitative analyses of GWI in sewer networks plus current status, limitations and future perspectives, considering the most relevant peer-reviewed research, including 83 studies. We propose dividing the existing research into two main groups: (1) phreatic zone, and (2) vadose zone. Most research has focused on the latter, mainly considering Rainfall-Derived Inflow and Infiltration (RDII), including surface water inflow and GWI. The ratio of each is not frequently separated; otherwise, there may be some assumptions, e.g. in dry weather and assuming zero surface water inflow. We also divided the employed approaches in different categories from physically-based numerical models, to simpler ones, e.g. water budget analysis. In fact, a combination of approaches may be applied to find the intricate characteristics of 'urban groundwater' or 'urban karst.' The findings revealed a heightened vulnerability of sewer networks to GWI, due to climate change (CC) and its associated repercussions, e.g. sea level rise (SLR), making the coastal cities the most vulnerable regions. In future research, the criticality of pre-emptive measures and monitoring of networks, especially near the coastline, is emphasised to ensure the resilience and adaptability of sewer networks in the context of GWI amid the potential impacts of CC. However, current monitoring practices lack widespread evidence for spatiotemporal analysis of GWI quantity.
Collapse
Affiliation(s)
- Nejat Zeydalinejad
- Centre for Water Systems, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, North Park Road, Exeter, Devon, EX4 4QF, United Kingdom.
| | - Akbar A Javadi
- Centre for Water Systems, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, North Park Road, Exeter, Devon, EX4 4QF, United Kingdom
| | - James L Webber
- Centre for Water Systems, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, North Park Road, Exeter, Devon, EX4 4QF, United Kingdom
| |
Collapse
|
3
|
Rosenzweig B, Montalto FA, Orton P, Kaatz J, Maher N, Kleyman J, Chen Z, Sanderson E, Adhikari N, McPhearson T, Herreros-Cantis P. NPCC4: Climate change and New York City's flood risk. Ann N Y Acad Sci 2024; 1539:127-184. [PMID: 39159317 DOI: 10.1111/nyas.15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
This chapter of the New York City Panel on Climate Change 4 (NPCC4) report provides a comprehensive description of the different types of flood hazards (pluvial, fluvial, coastal, groundwater, and compound) facing New York City and provides climatological context that can be utilized, along with climate change projections, to support flood risk management (FRM). Previous NPCC reports documented coastal flood hazards and presented trends in historical and future precipitation and sea level but did not comprehensively assess all the city's flood hazards. Previous NPCC reports also discussed the implications of floods on infrastructure and the city's residents but did not review the impacts of flooding on the city's natural and nature-based systems (NNBSs). This-the NPCC's first report focused on all drivers of flooding-describes and profiles historical examples of each type of flood and summarizes previous and ongoing research regarding exposure, vulnerability, and risk management, including with NNBS and nonstructural measures.
Collapse
Affiliation(s)
- Bernice Rosenzweig
- Environmental Science, Sarah Lawrence College, Bronxville, New York, USA
| | - Franco A Montalto
- College of Engineering, Drexel University, Philadelphia, Pennsylvania, USA
- eDesign Dynamics LLC, New York, New York, USA
| | - Philip Orton
- School of Engineering and Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | | | - Nicole Maher
- The Nature Conservancy, Cold Spring Harbor, New York, USA
| | | | - Ziyu Chen
- School of Engineering and Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | | | - Nirajan Adhikari
- College of Engineering, Drexel University, Philadelphia, Pennsylvania, USA
- eDesign Dynamics LLC, New York, New York, USA
| | - Timon McPhearson
- Urban Systems Lab, The New School, New York, New York, USA
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | | |
Collapse
|
4
|
Su X, Befus KM, Hummel MA. Shoreline barriers may amplify coastal groundwater hazards with sea-level rise. Sci Rep 2024; 14:15559. [PMID: 38969675 PMCID: PMC11226656 DOI: 10.1038/s41598-024-66273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Subsurface barriers have been proposed to protect coastal aquifers from sea-level rise induced seawater intrusion, but the potential for groundwater emergence near subsurface barriers remains unknown. Here, we investigated how emergence changes groundwater flow conditions and influences the protective performance of subsurface barriers with sea-level rise. We tested the subterranean consequences of sea-level rise for cutoff walls and subsurface dams with cross-shore groundwater flow and salt transport models, investigating how barrier design, aquifer properties, and hydrological conditions control the potential for emergence, groundwater partitioning at the barrier, and seawater intrusion with sea-level rise. We find that most subsurface infrastructure cannot prevent seawater intrusion and emergence simultaneously. Subsurface dams spanning more than half of the aquifer thickness created emergence hazards and subsequent groundwater partitioning for all scenarios tested. Cutoff walls were less effective at reducing seawater intrusion for all opening sizes but could reduce the emergence potential compared to similarly sized subsurface dams. Our results demonstrate the challenging trade-offs in mitigating the coastal groundwater hazards of seawater intrusion and emergence with sea-level rise, where groundwater flooding inland of protective infrastructure would require combinations of subsurface impoundments and other mitigation techniques, such as pumping or drains.
Collapse
Affiliation(s)
- Xin Su
- Department of Geosciences, University of Arkansas, Fayetteville, 72701, AR, USA.
- Center for Applied Earth Science and Engineering Research, University of Memphis, Memphis, 38152, TN, USA.
| | - Kevin M Befus
- Department of Geosciences, University of Arkansas, Fayetteville, 72701, AR, USA
| | - Michelle A Hummel
- Department of Civil Engineering, University of Texas at Arlington, Arlington, 76019, TX, USA
| |
Collapse
|
5
|
Dubois E, Cherif SMA, Abidine MM, Bah MFO, Chenal J, Marshall M, Oumarou W, Grossiord C, Perona P. Nature-based solution enhances resilience to flooding and catalyzes multi-benefits in coastal cities in the Global South. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172282. [PMID: 38614326 DOI: 10.1016/j.scitotenv.2024.172282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Coastal cities are facing a rise in groundwater levels induced by sea level rise, further triggering saturation excess flooding where groundwater levels reach the topographic surface or reduce the storage capacity of the soil, thus stressing the existing infrastructure. Lowering groundwater levels is a priority for sustaining the long-term livelihood of coastal cities. In the absence of studies assessing the possibility of using tree-planting as a measure of alleviating saturation excess flooding in the context of rising groundwater levels, the multi-benefit nature of tree-planting programs as sustainable Nature-based solutions (NBSs) in coastal cities in the Global South is discussed. In environments where groundwater is shallow, trees uptake groundwater or reduce groundwater recharge, thereby contributing to lower groundwater levels and increasing the unsaturated zone thickness, further reducing the risk of saturation excess flooding. Tree-planting programs represent long-term solutions sustained by environmental factors that are complementary to conventional engineering solutions. The multi-benefit nature of such NBSs and the expected positive environmental, economic, and social outcomes make them particularly promising. Wide social acceptance was identified as crucial for the long-term success of any tree-planting program, as the social factor plays a major role in addressing most weaknesses and threats of the solution. In the case of Nouakchott City (Mauritania), where a rise in groundwater levels has led to permanent saturation excess flooding, a tree-planting program has the potential to lower the groundwater levels, thereby reducing flooding during the rainy season.
Collapse
Affiliation(s)
- Emmanuel Dubois
- Platform of Hydraulic Constructions, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
| | | | - Mohamed Mahmoud Abidine
- Biodiversity and Plant Resources Valorization Unit, Faculty of Science and Technology - University of Nouakchott, Nouakchott, Mauritania
| | | | - Jerome Chenal
- Excellence in Africa, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Montana Marshall
- Platform of Hydraulic Constructions, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Wague Oumarou
- Centre national de la ressource en eau (CNRE) [Mauritanian Water resource Survey], Nouakchott, Mauritania
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland; Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape (WSL), Lausanne, Switzerland
| | - Paolo Perona
- Platform of Hydraulic Constructions, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Zarei Mahmoudabadi T, Pasdar P, Eslami H. Exposure risks to SARS-CoV-2 (COVID-19) in wastewater treatment plants: a review. SUSTAINABLE WATER RESOURCES MANAGEMENT 2024; 10:85. [DOI: 10.1007/s40899-024-01065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025]
|
7
|
Huang H, Zhai M, Lei X, Chai B, Liao W, He L, Zuo X, Wang H. Rapid quantification of the surface overflow and underground infiltration in sewer pipes based on computer vision and continuous optimization. ENVIRONMENTAL RESEARCH 2023; 235:116606. [PMID: 37429396 DOI: 10.1016/j.envres.2023.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
The overloading of the sewer network caused by unwarranted infiltration of stormwater may lead to waterlogging and environmental pollution. The accurate identification of infiltration and surface overflow is essential to predict and reduce these risks. To retrieve the limitations of infiltration estimation and the failure of surface overflow perception using the common stormwater management model (SWMM), a surface overflow and underground infiltration (SOUI) model is proposed to estimate the infiltration and overflow. First, the precipitation, water level of the manhole, surface water depth and images of the overflowing point, and volume at the outfall are collected. Then, the surface waterlogging area is identified based on computer vision to reconstruct the local digital elevation model (DEM) by spatial interpolation, and the relationship between the waterlogging depth, area and volume is established to identify the real-time overflow. Next, a continuous genetic algorithm optimization (CT-GA) model is proposed for the underground sewer system to determine the inflow rapidly. Finally, surface and underground flow estimations are combined to perceive the state of the urban sewer network accurately. The results show that, compared with the common SWMM simulation, the accuracy of the water level simulation is improved by 43.5% during the rainfall period, and the time cost of the computational optimization is reduced by 67.5%. The proposed method can effectively diagnose the operation state and overflow risk of the sewer networks in real time during rainfall seasons.
Collapse
Affiliation(s)
- Haocheng Huang
- School of Civil Engineering, Central South University, Changsha, 100038, China; State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 410075, China
| | - Mingshuo Zhai
- Collaborative Innovation Center for Intelligent Regulation & Comprehensive Management of Water Resources, College of Water Resources and Hydropower, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, China
| | - Xiaohui Lei
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 410075, China; Collaborative Innovation Center for Intelligent Regulation & Comprehensive Management of Water Resources, College of Water Resources and Hydropower, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, China
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation & Comprehensive Management of Water Resources, College of Water Resources and Hydropower, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, China.
| | - Weihong Liao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 410075, China
| | - Lixin He
- Collaborative Innovation Center for Intelligent Regulation & Comprehensive Management of Water Resources, College of Water Resources and Hydropower, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, China
| | - Xiangyang Zuo
- Collaborative Innovation Center for Intelligent Regulation & Comprehensive Management of Water Resources, College of Water Resources and Hydropower, Hebei University of Engineering, Handan, 056038, China; Hebei Key Laboratory of Intelligent Water Conservancy, College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan, 056038, China
| | - Hao Wang
- School of Civil Engineering, Central South University, Changsha, 100038, China; State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 410075, China
| |
Collapse
|
8
|
Bertels D, De Meester J, Dirckx G, Willems P. Estimation of the impact of combined sewer overflows on surface water quality in a sparsely monitored area. WATER RESEARCH 2023; 244:120498. [PMID: 37639989 DOI: 10.1016/j.watres.2023.120498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Combined sewer overflows (CSOs) can have a severe negative, local impact on surface water systems. To assure good ecological surface water quality and drinking water production that meets the demands, the impact of sewer system overflows on the surrounding water bodies for current and future climate conditions needs to be assessed. Typically, integrated, detailed hydrological and hydrodynamic water quantity and quality models are used for this purpose, but often data and computational resource requirements limit their applicability. Therefore, an alternative computationally efficient, integrated water quantity and quality model of sewer systems and their receiving surface waters is proposed to assess the impact of CSOs on surface water quality in a sparsely observed area. A conceptual model approach to estimate CSO discharges is combined with an empirical model for estimating CSO pollutant concentrations based on waste water treatment plant influent observations. Both methods are compared with observations and independent results of established reference methods as to evaluate their performance. The methodology is demonstrated by modelling the current impact of CSOs on the water abstraction area of a major drinking water production centre in Flanders, Belgium. It is concluded that the proposed conceptual models achieve similar results for daily WWTP effluent and CSO frequency, whereby the accumulated CSO volume is similar to more detailed full hydrodynamic models. Further, the estimated pollutant concentrations correspond with another dataset based on high resolution sampled overflows. As a result, the proposed computational efficient method can give insights in the impact of CSOs on the water quality at a catchment level and can be used for planning monitoring campaigns or performing analyses of e.g. the current and future water availability for a data scarce areas.
Collapse
Affiliation(s)
- Daan Bertels
- KU Leuven, Department of Civil Engineering, Hydraulics and Geotechnics Section, Kasteelpark Arenberg 40 - box 2448, Leuven 3001, Belgium.
| | - Joke De Meester
- KU Leuven, Department of Civil Engineering, Hydraulics and Geotechnics Section, Kasteelpark Arenberg 40 - box 2448, Leuven 3001, Belgium
| | - Geert Dirckx
- Aquafin NV, R & D, Dijkstraat 8, Aartselaar 2630, Belgium
| | - Patrick Willems
- KU Leuven, Department of Civil Engineering, Hydraulics and Geotechnics Section, Kasteelpark Arenberg 40 - box 2448, Leuven 3001, Belgium
| |
Collapse
|
9
|
Lindner BG, Suttner B, Zhu KJ, Conrad RE, Rodriguez-R LM, Hatt JK, Brown J, Konstantinidis KT. Toward shotgun metagenomic approaches for microbial source tracking sewage spills based on laboratory mesocosms. WATER RESEARCH 2022; 210:117993. [PMID: 34979467 DOI: 10.1016/j.watres.2021.117993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Little is known about the genomic diversity of the microbial communities associated with raw municipal wastewater (sewage), including whether microbial populations specific to sewage exist and how such populations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun metagenomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome-assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater control at our analytical limit of detection. Tracking the dynamics of the populations represented by these MAGs revealed varied decay kinetics, depending on (inferred) phenotypes, e.g., anaerobes decayed faster than aerobes under the well-aerated incubation conditions. Notably, a portion of these populations showed decay patterns similar to those of common markers, Enterococcus and HF183. Despite the apparent decay of these populations, the abundance of β-lactamase encoding genes remained high throughout incubation relative to the control. Lastly, we constructed genomic libraries representing several different fecal sources and outline a bioinformatic approach which leverages these libraries for identifying and apportioning contamination signal among multiple probable sources using shotgun metagenomic data.
Collapse
Affiliation(s)
- Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brittany Suttner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kevin J Zhu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roth E Conrad
- Ocean Science and Engineering, Georgia Institute of Technology, 311 Ferst Drive, ES&T Building, Room 3321, Atlanta, GA 30332, USA
| | - Luis M Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
10
|
Preparing for Sea-Level Rise through Adaptive Managed Retreat of a New Zealand Stormwater and Wastewater Network. INFRASTRUCTURES 2020. [DOI: 10.3390/infrastructures5110092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.
Collapse
|
11
|
Sensitivity Analysis of a Groundwater Infiltration Model and Sea-Level Rise Applications for Coastal Sewers. WATER 2020. [DOI: 10.3390/w12030923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Groundwater elevations in coastal cities will be affected by climate-change-induced sea level rise (SLR) and wastewater collection systems will experience increased groundwater infiltration (GWI) due to greater submergence of sewer pipes. Commercial sewer hydraulics models consider GWI to be a constant quantity estimated via a low-flow monitoring campaign and are incapable of predicting future flows due to changes in GW elevations. A global sensitivity analyses conducted for a two-dimensional GWI pipe flow model found the most important input parameters are groundwater head and surrounding soil hydraulic conductivity. Two case studies were conducted considering a range of pipe defect severity to estimate increases in GWI associated with predictions of future SLR. The findings are that SLR will begin to have noticeable impacts in terms of increased average dry weather flow (ADWF) as soon as 2030 (3–10%) and will increase dramatically in the future (10–29% by 2050, and 50% or more by 2100). Daily and seasonal tide ranges affect the normal diurnal flow variations by between 3% and 10%. The estimation methodology and case studies described here illustrate the coming future importance of SLR effects on GWI in coastal collection systems that should be included in facilities planning and design.
Collapse
|