1
|
Ratnasari A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism-A review. Bioengineered 2023; 14:2252234. [PMID: 37712708 PMCID: PMC10506444 DOI: 10.1080/21655979.2023.2252234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 09/16/2023] Open
Abstract
Membrane technology can play a suitable role in removing pharmaceutical active compounds since it requires low energy and simple operation. Even though membrane technology has progressed for wastewater applications nowadays, modifying membranes to achieve the strong desired membrane performance is still needed. Thus, this study overviews a comprehensive insight into the application of modified polymer membranes to remove pharmaceutical active compounds from wastewater. Biotoxicity of pharmaceutical active compounds is first prescribed to gain deep insight into how membranes can remove pharmaceutical active compounds from wastewater. Then, the behavior of the diffusion mechanism can be concisely determined using mass transfer factor model that represented by β and B with value up to 2.004 g h mg-1 and 1.833 mg g-1 for organic compounds including pharmaceutical active compounds. The model refers to the adsorption of solute to attach onto acceptor sites of the membrane surface, external mass transport of solute materials from the bulk liquid to the membrane surface, and internal mass transfer to diffuse a solute toward acceptor sites of the membrane surface with evidenced up to 0.999. Different pharmaceutical compounds have different solubility and relates to the membrane hydrophilicity properties and mechanisms. Ultimately, challenges and future recommendations have been presented to view the future need to enhance membrane performance regarding fouling mitigation and recovering compounds. Afterwards, the discussion of this study is projected to play a critical role in advance of better-quality membrane technologies for removing pharmaceutical active compounds from wastewater in an eco-friendly strategy and without damaging the ecosystem.
Collapse
Affiliation(s)
- Anisa Ratnasari
- Department of Environmental Engineering, Faculty of Civil Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| |
Collapse
|
2
|
Xu X, Xu Y, Xu N, Pan B, Shu F, Ni J. Bioaccumulation of pharmaceuticals and personal care products (PPCPs) in freshwater pearl mussels Hyriopsis cumingii in Poyang Lake. MARINE POLLUTION BULLETIN 2023; 193:115221. [PMID: 37390627 DOI: 10.1016/j.marpolbul.2023.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Thirty-five PPCPs were measured in representative freshwater pearl mussels (Hyriopsis cumingii) in Poyang Lake, the largest lake of China, as well as their responses to sedimentary PPCPs. We observed 32 PPCPs in soft tissues of mussels at a total concentration of 2721.5 ± 929.3 ng·g-1 dry weight (dw), much higher than those in sediments (21 PPCPs, 273.2 ± 89.4 ng·g-1 dw). Anti-inflammatories were the primary contaminants detected in both sediments and mussels. PPCP concentrations in mussels exhibited significant organ-specific characteristics, and gonads were identified as a hotspot for these contaminants. Correlation analysis showed that gonads were more likely to assimilate triclosan from sediments. Biochemical analysis revealed a higher physiological sensitivity of glutathione synthesis in gonads to sedimentary PPCPs, suggesting the long-term oxidative damage. Our findings highlight the concern on the potential effects of sedimentary PPCPs to propagation of mussels, and emphasize the necessity to formulate strategies for sedimentary PPCPs control targeting a healthy lake.
Collapse
Affiliation(s)
- Xuming Xu
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yaru Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Fengyue Shu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Wang S, Sun Z, Ren C, Li F, Xu Y, Wu H, Ji C. Time- and dose-dependent detoxification and reproductive endocrine disruption induced by tetrabromobisphenol A (TBBPA) in mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105839. [PMID: 36481715 DOI: 10.1016/j.marenvres.2022.105839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
As a typical brominated flame retardant (BFR), tetrabromobisphenol A (TBBPA) has been frequently detected in both biotic and abiotic matrices in marine environment. Our previous study found that genes related to metabolism phase I/II/III as well as steroid metabolism in Mytilus galloprovincialis were significantly altered by TBBPA treatment. However, the time- and dose-dependent response profiles of these genes to TBBPA exposure were rarely reported. In this study, the time- and dose-dependent effects of TBBPA on detoxification and reproductive endocrine disruption in M. galloprovincialis were explored by evaluating the responses of related gene expressions, enzymatic activities and gametogenesis to different concentrations of TBBPA (0.6, 3, 15, 75 and 375 μg/L) for different durations (14, 21 and 28 days). The results showed that the TBBPA accumulation increased linearly with the increases of exposure time and dose. Cytochrome P450 family 3 (CYP3A1-like) cooperated with CYP4Y1 for phase I biotransformation of TBBPA in mussels. The dose-response curves of phase II/III genes (glutathione-S-transferase (GST), P-glycoprotein (ABCB), and multidrug resistance protein (ABCC)) showed similar response profiles to TBBPA exposure. The common induction of phase I/II/III (CYPs, GST, ABCB and ABCC) suggested TBBPA detoxification regulation in mussels probably occurred in a step-wise manner. Concurrently, direct sulfation mediated by sulfotransferases (SULTs) on TBBPA was also the vital metabolic mechanism for TBBPA detoxification, which was supported by the coincidence between up-regulation of SULT1B1 and TBBPA accumulation. The significant promotion of steroid sulfatase (STS) might result from TBBPA-sulfate catalyzed by SULT1B1 due to its chemical similarity to estrone-sulfate. Furthermore, the promotion of gametogenesis was consistent with the induction of STS, suggesting that STS might interrupt steroids hydrolysis process and was responsible for reproductive endocrine disruption in M. galloprovincialis. This study provides a better understanding of the detoxification and endocrine-disrupting mechanisms of TBBPA.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zuodeng Sun
- Shandong Fisheries Development and Resource Conservation Center, Ji'nan, 250013, PR China
| | - Chuanbo Ren
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China.
| |
Collapse
|
4
|
Fehrenbach GW, Pogue R, Carter F, Clifford E, Rowan N. Implications for the seafood industry, consumers and the environment arising from contamination of shellfish with pharmaceuticals, plastics and potentially toxic elements: A case study from Irish waters with a global orientation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157067. [PMID: 35780875 DOI: 10.1016/j.scitotenv.2022.157067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Shellfish are a rich source of minerals, B-vitamins and omega-3 to the human diet. The global population is expected to reach 9.6 billion people by 2050 where there will be increased demand for shellfish and for sustained improvements in harvesting. The production of most consumed species of shellfish is sea-based and are thus susceptible to in situ environmental conditions and water quality. Population growth has contributed to expansion of urbanization and the generation of effluent and waste that reaches aquatic environments, potentially contaminating seafood by exposure to non-treated effluents or inappropriately discarded waste. Environmental contaminants as microplastics (MP), pharmaceuticals (PHAR) and potentially toxic contaminants (PTE) are being identified in all trophic levels and are a current threat to both shellfish and consumer safety. Immunotoxicity, genotoxicity, fertility reduction, mortality and bioaccumulation of PTE are representative examples of the variety of effects already established in contaminated shellfish. In humans, the consumption of contaminated shellfish can lead to neurological and developmental effects, reproductive and gastrointestinal disorders and in extreme cases, death. This timely review provides insights into the presence of MP, PHAR and PTE in shellfish, and estimate the daily intake and hazard quotient for consumption behaviours. Alternatives approaches for seafood depuration that encompass risk reduction are addressed, to reflect state of the art knowledge from a Republic of Ireland perspective. Review of best-published literature revealed that MP, PHAR and PTE contaminants were detected in commercialised species of shellfish, such as Crassostrea and Mytilus. The ability to accumulate these contaminants by shellfish due to feeding characteristics is attested by extensive in vitro studies. However, there is lack of knowledge surrounding the distribution of these contaminants in the aquatic environment their interactions with humans. Preventive approaches including risk assessment are necessary to safeguard the shellfish industry and the consumer.
Collapse
Affiliation(s)
- Gustavo Waltzer Fehrenbach
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland.
| | - Robert Pogue
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, 71966-700, Brazil
| | - Frank Carter
- Coney Island Shellfish Ltd., Sligo F91YH56, Ireland
| | - Eoghan Clifford
- School of Engineering, National University of Ireland Galway, H91HX31, Ireland; Ryan Institute, National University of Ireland Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland; Empower Eco™ Sustainability Hub, Technological University of the Shannon - Midlands Midwest, N37F6D7, Ireland
| |
Collapse
|
5
|
Madikizela LM, Ncube S. Health effects and risks associated with the occurrence of pharmaceuticals and their metabolites in marine organisms and seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155780. [PMID: 35537516 DOI: 10.1016/j.scitotenv.2022.155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and their metabolites are continuously invading the marine environment due to their input from the land such as their disposal into the drains and sewers which is mostly followed by their transfer into wastewater treatment plants (WWTPs). Their incomplete removal in WWTPs introduces pharmaceuticals into oceans and surface water. To date, various pharmaceuticals and their metabolites have been detected in marine environment. Their occurrence in marine organisms raises concerns regarding toxic effects and development of drug resistant genes. Therefore, it is crucial to review the health effects and risks associated with the presence of pharmaceuticals and their metabolites in marine organisms and seafood. This is an important study area which is related to the availability of seafood and its quality. Hence, this study provides a critical review of the information available in literature which relates to the occurrence and toxic effects of pharmaceuticals in marine organisms and seafood. This was initiated through conducting a literature search focussing on articles investigating the occurrence and effects of pharmaceuticals and their metabolites in marine organisms and seafood. In general, most studies on the monitoring of pharmaceuticals and their metabolites in marine environment are conducted in well developed countries such as Europe while research in developing countries is still limited. Pharmaceuticals present in freshwater are mostly found in seawater and marine organisms. Furthermore, the toxicity caused by different pharmaceutical mixtures was observed to be more severe than that of individual compounds.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa 0204, South Africa
| |
Collapse
|
6
|
Xu X, Xu Y, Xu N, Pan B, Ni J. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam. CHEMOSPHERE 2022; 301:134721. [PMID: 35483658 DOI: 10.1016/j.chemosphere.2022.134721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are a group of emerging anthropogenic pollutants. Here we investigated the occurrence and concentrations of 35 typical PPCPs in water, sediment, and freshwater mollusks (Hyriopsis cumingii, Unio douglasiae, Sinanodonta woodiana, Lamprotula leai and Corbicula fluminea) of the Dongting Lake downstream of the Three Gorges Dam. As results, 33 PPCPs were detected in water and sediment of the lake. Ketoprofen (not detected (ND)-292.8 ng/L, mean 91.1 ng/L) and roxithromycin (13.7-141.9 ng/L, mean 30.4 ng/L) were the primary PPCPs measured in lake water, while ibuprofen (ND-105.0 ng/g, mean 30.0 ng/g) and ketoprofen (ND-142.9 ng/g, mean 27.6 ng/g) were dominant in the sediment. Distinct seasonal difference in PPCP compositions was observed in both water and sediment of the Dongting Lake, potentially associated with the water-level fluctuations driven by the Three Gorges Dam operations. Ketoprofen and ibuprofen were also frequently detected in the soft tissues of freshwater mollusks, with concentrations of 42.5-1206.6 and 44.9-992.7 ng/g, respectively. Significant species-specific accumulation characteristics of PPCPs in mollusks were observed, with the highest total contents being reported for Corbicula fluminea (3.18 ± 1.13 μg/g). Moreover, gonads of mollusks were identified as the target organ to accumulate these compounds. Correlation analysis further revealed the strong associations of PPCP concentrations in mollusks with those in water and sediment, suggesting the importance of controlling dissolved and sedimentary bioavailability of PPCPs for ecological risk management in this freshwater lake ecosystems.
Collapse
Affiliation(s)
- Xuming Xu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Materials Fluxes in River Ecosystems, Peking University, Beijing, 100871, China
| | - Yaru Xu
- The Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- The Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Jinren Ni
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Materials Fluxes in River Ecosystems, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Lettieri G, Carusone N, Notariale R, Prisco M, Ambrosino A, Perrella S, Manna C, Piscopo M. Morphological, Gene, and Hormonal Changes in Gonads and In-Creased Micrococcal Nuclease Accessibility of Sperm Chromatin Induced by Mercury. Biomolecules 2022; 12:87. [PMID: 35053235 PMCID: PMC8773939 DOI: 10.3390/biom12010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3β-HSD and 17β-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3β-HSD and 17β-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Nadia Carusone
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Alessia Ambrosino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Shana Perrella
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| |
Collapse
|
8
|
Environmental protection by the adsorptive elimination of acetaminophen from water: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Koagouw W, Stewart NA, Ciocan C. Long-term exposure of marine mussels to paracetamol: is time a healer or a killer? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48823-48836. [PMID: 33928507 PMCID: PMC8084691 DOI: 10.1007/s11356-021-14136-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 04/16/2023]
Abstract
Pharmaceuticals pose a major threat to the marine environment, and several studies have recently described their negative effects on marine organisms. Pharmaceutical compounds are constantly being released into aquatic ecosystems, and chronic exposure, even at low concentrations, may have a major impact on marine organisms. The purpose of the present study is to evaluate the biological changes induced by one of the most widely used pharmaceuticals-paracetamol-in the blue mussel Mytilus edulis, after a long-term exposure at environmentally relevant concentrations. We present our data alongside and in comparison with results from a previous short-term exposure, to demonstrate the significance of exposure period on the effects of paracetamol in adult blue mussels. After 24 days of laboratory exposure, seven potential target genes were selected to examine toxicological effects in mussels' gonads and possible disruptive effects on reproductive processes. The results show the modulation of some important reproduction-related genes: estrogen receptor-2 (ER2), vitelline envelope zona pellucida domain-9 (V9), and vitellogenin (VTG). Variations in mRNA expression of four other genes involved in apoptosis (HSP70, CASP8, BCL2, and FAS) are also highlighted. Histopathological alterations caused by paracetamol, together with neutral red retention time response in mussels' hemocytes, are presented herein. Overall, this study highlights the exacerbated effects of low concentration of paracetamol after chronic exposure, similar to the damage induced by higher concentrations in a short exposure scenario, thus emphasizing the importance of length of exposure period when studying the effects of this substance. Additionally, this study also discusses the potential of paracetamol to inflict several major changes in the reproductive system of mussels and thus possibly affect the survival of populations.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
- Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, UK
- Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia
| | - Nicolas A. Stewart
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, UK
- Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, UK
| |
Collapse
|
10
|
Koagouw W, Arifin Z, Olivier GWJ, Ciocan C. High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia. MARINE POLLUTION BULLETIN 2021; 169:112558. [PMID: 34102416 DOI: 10.1016/j.marpolbul.2021.112558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of several aquatic contaminants, including pharmaceuticals, were investigated in seawater samples collected from effluent-dominated sites in Indonesia: 4 sites in Jakarta Bay and one on the north coast of Central Java. The data presented in this preliminary study provide a snapshot of seawater quality in these areas. Results show that nutrient parameters exceeded the Indonesian Standard Quality of Seawater limits, and some metals were also present. Interestingly, high concentrations of paracetamol were detected at Angke (610 ng/L) and Ancol (420 ng/L), both in Jakarta Bay. To date, this is the first study to report the presence of paracetamol (acetaminophen) in the coastal waters around Indonesia. The high concentrations detected, compared to other levels reported in scientific literature, raise concerns about the environmental risks associated with long-term exposure and, especially, the impact on nearby shellfish farms. Given pharmaceuticals' consideration as emerging contaminants, these data suggest further investigations are needed.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, United Kingdom; Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, United Kingdom; Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia.
| | - Zainal Arifin
- Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia.
| | - George W J Olivier
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, United Kingdom.
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, United Kingdom; Centre for Aquatic Environments, University of Brighton, Lewes Road, Brighton, United Kingdom.
| |
Collapse
|
11
|
Libralato G, Freitas R, Buttino I, Arukwe A, Della Torre C. Special issue on challenges in emerging environmental contaminants CEEC19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30903-30906. [PMID: 32557030 DOI: 10.1007/s11356-020-09539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Isabella Buttino
- Section of ecological risk assessment in marine coastal areas, Italian Institute for Environmental Protection and Research, Livorno, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|