1
|
Cuzziol Boccioni AP, Peltzer PM, Attademo AM, Leiva L, Colussi CL, Repetti MR, Russell-White K, Di Conza N, Lajmanovich RC. High toxicity of agro-industrial wastewater on aquatic fauna of a South American stream: Mortality of aquatic turtles and amphibian tadpoles as bioindicators of environmental health. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11010. [PMID: 38433361 DOI: 10.1002/wer.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Leonardo Leiva
- Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa Fe, Argentina
| | - Carlina L Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Karen Russell-White
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Noelia Di Conza
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
2
|
Gendron AD, Lacaze É, Taranu ZE, Gouge R, Larbi-Youcef Y, Houde M, André C, Gagné F, Triffault-Bouchet G, Giroux I. The Comet Assay, a Sensitive Biomarker of Water Quality Improvement Following Adoption of Beneficial Agricultural Practices? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2201-2214. [PMID: 37417785 DOI: 10.1002/etc.5711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Numerous actions have been undertaken by farmers to attenuate the impact of agricultural activities on aquatic ecosystems. The identification of biomarkers that respond quickly to water quality improvement could facilitate the assessment of adopted alternative practices and help maintain mobilization among stakeholders. We evaluated the potential of the comet assay, a biomarker of genotoxic effects, using a freshwater mussel, Elliptio complanata, as a model animal. The frequency of DNA damage was assessed in hemocytes of mussels collected from a pristine habitat and caged for 8 weeks in the Pot au Beurre River, a tributary of the fluvial Lake St.-Pierre (Quebec, Canada) impacted by agricultural activities. We found that the level of DNA damage naturally induced in mussel hemocytes was low and showed very limited variations over time. Compared with these baseline levels and to laboratory controls, we observed a doubling in DNA alterations in mussels exposed to agricultural runoff in the third branch of the Pot au Beurre River. The genotoxic response was significantly lower in mussels caged in the first branch of the Pot au Beurre River, where longer stretches of shoreline have been restored as buffer strips. Glyphosate, mesotrione, imazethapyr, and metolachlor were the main discriminant pesticides between these two branches. Metolachlor was found in sufficient concentrations to induce DNA damage, but it is more likely that the observed genotoxicity was the result of a "cocktail effect," that is, the cumulative contribution of coexisting genotoxicants including the above-mentioned herbicides and ingredients in their formulation. Our findings suggest that the comet assay is a sensitive tool for the early detection of changes in water toxicity following the adoption of agricultural beneficial practices. Environ Toxicol Chem 2023;42:2201-2214. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.
Collapse
Affiliation(s)
- Andrée D Gendron
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Émilie Lacaze
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Zofia E Taranu
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Rebecca Gouge
- Compliance Promotion and Marine Programs, Environmental Protection Operations, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Yasmina Larbi-Youcef
- Direction Aménagement du Territoire et Développement Régional, Fédération de l'Union des producteurs agricoles de la Montérégie, Saint-Hyacinthe, Quebec, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Chantale André
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - François Gagné
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Gaëlle Triffault-Bouchet
- Division Écotoxicologie et Évaluation du risque, Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, Quebec, Canada
| | - Isabelle Giroux
- Direction générale du suivi de l'état de l'environnement, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, Quebec, Canada
| |
Collapse
|
3
|
Pérez-Iglesias JM, Natale GS, Brodeur JC, Larramendy ML. Realistic scenarios of pesticide exposure alters multiple biomarkers in BOANA PULCHELLA (ANURA) Adult Frogs. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:309-320. [PMID: 36928692 DOI: 10.1007/s10646-023-02639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Imazethapyr, a post-emergent herbicide used in worldwide soybean and corn crops, induces genetic and biochemical alterations in aquatic vertebrates. This study examined the relationship between biomarkers at different organization levels and imazethapyr real-life route exposure in Boana pulchella adults. Frogs were exposed to imazethapyr-based formulation Pivot® H (10.59%) at concentrations representing possible acute routes: field runoff (S1:10 mg.L-1), exposure after direct foliar application (S2:100 mg.L-1) and during direct foliar application (S3:1000 mg.L-1). Post-exposure, endpoints levels were evaluated: organism alterations, biochemical activities and cytogenetic assays. Forty-eight hours post-exposure, antioxidant enzymes decrease, micronuclei induction and DNA damage were observed in all scenarios, while cholinesterase activity increase and body condition reduction were observed in frog-exposed to S3. Ninety-six hours post-exposure, frogs showed glutathione-S-transferase inhibition in S1, micronuclei induction in S2 and S3, and DNA-damage increase in S3. Herbicides routes of exposures in real-life could indicate that authorized applications have a risk to amphibian populations.
Collapse
Affiliation(s)
- J M Pérez-Iglesias
- Centro de Investigaciones del Medio Ambiente (CIM), CONICET. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, B1900, Argentina.
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo. CONICET, Universidad Nacional de La Plata, Calle 64 N°3 esq. 120, Lab. 17, La Plata, B1900, Argentina.
- Instituto de Química de San Luis, CONICET. Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, San Luis, D5700, Argentina.
| | - G S Natale
- Centro de Investigaciones del Medio Ambiente (CIM), CONICET. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, B1900, Argentina
| | - J C Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham (B1686), Buenos Aires, Argentina
| | - M L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo. CONICET, Universidad Nacional de La Plata, Calle 64 N°3 esq. 120, Lab. 17, La Plata, B1900, Argentina
| |
Collapse
|
4
|
Pontes JRS, Lopes I, Ribeiro R, Araújo CVM. Humane acute testing with tadpoles for risk assessment of chemicals: Avoidance instead of lethality. CHEMOSPHERE 2022; 303:135197. [PMID: 35691390 DOI: 10.1016/j.chemosphere.2022.135197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In spite of the sensitivity of amphibians to contamination, data from fish have been commonly used to predict the effects of chemicals on aquatic life stages. However, recent studies have highlighted that toxicity data derived from fish species may not protect all the aquatic life stages of amphibians. For pesticide toxicity assessment (PTA), EFSA has highlighted that more information on lethal toxicity for the aquatic life stages of amphibians is still needed to reduce uncertainties. The current review aims to propose a test with amphibians based on spatial avoidance, as a more humane alternative method to the lethality tests for chemicals. A review of lethal toxicity tests carried out with amphibians in the period between 2018 and 2021 is presented, then we discuss the suitability of using fish toxicity data as a surrogate to predict the effects on more sensitive amphibian groups. The possible differences in sensitivity to chemicals may justify the need to develop further tests with amphibian embryos and larvae in order to reduce uncertainties. A new test is proposed focused on the avoidance behaviour of organisms fleeing from contamination to replace lethal tests. As avoidance indicates the threshold at which organisms will flee from contamination, a reduction in the population density, or its disappearance, at the local scale due to emigration is expected, with ecological consequences analogous to mortality. Avoidance tests provide an ethical advantage over lethal tests as they respect the concepts of the 3 Rs (mainly Refinement), reducing the suffering of the organisms.
Collapse
Affiliation(s)
- João Rodolfo S Pontes
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Ribeiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
5
|
Pérez-Iglesias JM, González P, Calderón MR, Natale GS, Almeida CA. Comprehensive evaluation of the toxicity of the flame retardant (decabromodiphenyl ether) in a bioindicator fish (Gambusia affinis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50845-50855. [PMID: 35243576 DOI: 10.1007/s11356-022-19462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In recent years, concerns have increased about the adverse effects on health and the environment of polybrominated diphenyl ethers (PBDEs), especially BDE-209, the most widely PBDE used globally. These pollutants derive from e-waste and present different adverse effects on biota. In this work, a toxicological study on mosquitofish (Gambusia affinis) using BDE-209 (2,2',3,3',4,4',5,'5',6,6'-decabromodiphenyl ether) was carried out. Acute toxicity bioassays were conducted with daily renewal of solutions, using different concentrations of environmental relevance, ranged between 10 and 100 μg L-1 of BDE-209. At 48 and 96 h of exposure, several parameters were evaluated, such as mortality, individual activity (swimming), biochemical activity (catalase; thiobarbituric acid-reactive substances; and acetylcholinesterase), and cytotoxic responses (micronucleus frequencies). In addition, integrated biomarker response and multivariate analyses were conducted to study the correlation of biomarkers. The calculated Lethal Concentration-50 remained constant after all exposure times (24 to 96 h), being the corresponding value 27.79 μg L-1 BDE-209. Furthermore, BDE-209 induced effects on the swimming activity of this species in relation to acetylcholine, since BDE-209 increased, producing oxidative damage at the biochemical level and genotoxicity after 48 h of exposure to 10 and 25 μg L-1 BDE-209. The results indicate that BDE-209 has biochemical, cytotoxic, neurotoxic, and genotoxic potential on G. affinis. In addition, mosquitofish could be used as a good laboratory model to evaluate environmental stressors since they could represent a risk factor for Neotropical species.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Patricia González
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Mirian Roxana Calderón
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medioambiente (CIM), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47 (CP 1900), La Plata, Argentina
| | - César Américo Almeida
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina.
| |
Collapse
|
6
|
Ascoli-Morrete T, Bandeira NMG, Signor E, Gazola HA, Homrich IS, Biondo R, Rossato-Grando LG, Zanella N. Bioaccumulation of pesticides and genotoxicity in anurans from southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45549-45559. [PMID: 35147872 DOI: 10.1007/s11356-022-19042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The expansion of agricultural activities causes habitat loss and fragmentation and the pollution of natural ecosystems through the intense use of pesticides, which may affect the populations of amphibian anurans that inhabit agricultural areas. The present study evaluated the in situ bioaccumulation of pesticides in a population of Leptodactylus luctator that occupies farmland in southern Brazil. We also compared the genotoxicity of L. luctator populations from farmland and forested areas in the same region. We analyzed the micronuclei and nuclear abnormalities of 34 adult anurans, 19 from farmland, and 15 from the forested area. We also assessed the presence of 32 pesticides in liver samples obtained from 18 farmland-dwelling anurans, using chromatographic analysis. We recorded significantly higher rates of nuclear abnormalities in the individuals from the farmland, in comparison with the forest. We detected nine pesticides in the liver samples, of which, deltamethrin was the most common and carbosulfan was recorded at the highest concentrations. The bioaccumulation of pesticides and the higher levels of genotoxic damage found in the anurans from agricultural areas, as observed in the present study, represent a major potential problem for the conservation of these vertebrates, including the decline of their populations and the extinction of species.
Collapse
Affiliation(s)
- Thaís Ascoli-Morrete
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil.
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Nelson M G Bandeira
- Centro de Pesquisa em Alimentação (CEPA), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Elias Signor
- Centro de Pesquisa em Alimentação (CEPA), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Humberto A Gazola
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Isis S Homrich
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rhaíssa Biondo
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Luciana G Rossato-Grando
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Noeli Zanella
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Instituto de Ciências Biológicas (ICB), Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
7
|
Fassiano AV, March H, Santos M, Juárez ÁB, Ríos de Molina MDC. Toxicological effects of active and inert ingredients of imazethapyr formulation Verosil® against Scenedesmus vacuolatus (Chlorophyta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31384-31399. [PMID: 35001267 DOI: 10.1007/s11356-021-17962-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Imazethapyr, a selective systemic herbicide, is widely used in agriculture and it is frequently detected in water bodies close to application areas. Like other agrochemicals, imazethapyr is commercialized in formulations containing a mixture of additives that increase the effectiveness of the active ingredient. These complex mixtures may cause adverse effects on non-target primary producers, such as microalgae, when they reach freshwater bodies. The aim of this study was to assess the effects, separately, of the formulation Verosil®, the formulation additives, and technical-grade imazethapyr, in the acidic form or as ammonium salt, on the microalga Scenedesmus vacuolatus (Chlorophyta). Verosil®, formulation additives, and acid imazethapyr significantly inhibited the growth of S. vacuolatus (Verosil® > formulation additives > acid imazethapyr) and caused morphological alterations from 2 mg L-1, 4 mg L-1, and 60 mg L-1 onwards, respectively. Verosil® and formulation additives caused the most adverse effect including membrane disorganization, cytoplasm contraction, cell wall thickening, thylakoidal membrane disaggregation, and starch granule accumulation. In addition, Verosil® and formulation additives increased the chl a/chl b ratio, indicating possible alterations in photosystems as a stress response. The carotene/chl a ratio was also increased in microalgae exposed to both Verosil® and formulation additives, suggesting an antioxidant response to these toxic compounds. All these results support the hypothesis that the formulation additives contribute significantly to the toxicity and alterations caused by the commercial formulation Verosil® on S. vacuolatus.
Collapse
Affiliation(s)
- Anabella Victoria Fassiano
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET- Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina
| | - Hugo March
- Agrofina S. A. Joaquín V, González 4977, C1419AYK, Buenos Aires, CABA, Argentina
| | - Marina Santos
- Instituto Nacional de Tecnología Industrial (INTI), Av. General Paz 5445, B1650KNA, Buenos Aires, San Martín, Argentina
| | - Ángela Beatriz Juárez
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
- Facultad de Ciencias Exactas Y Naturales, Departamento de Biodiversidad Y Biología Experimental, Universidad de Buenos Aires, CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad Y Biología Experimental Y Aplicada (IBBEA), Int. Guiraldes 2160, C1428EHA, Buenos Aires, CABA, Argentina.
| | - María Del Carmen Ríos de Molina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET- Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
| |
Collapse
|
8
|
ASSIS RHAYANEA, BENVINDO-SOUZA MARCELINO, ARAÚJO-SANTOS CIRLEYG, BORGES RINNEUE, SANTOS-FILHO ITAMARD, OLIVEIRA LEISSACAROLINA, MENDONÇA MARIAANDREIAC, SANTOS LIARAQUELS. Mutagenic effect of a commercial fungicide on Rana catesbeiana and Leptodactylus latrans tadpoles. AN ACAD BRAS CIENC 2022; 94:e20210161. [DOI: 10.1590/0001-3765202220210161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/08/2021] [Indexed: 05/31/2023] Open
Affiliation(s)
- RHAYANE A. ASSIS
- Instituto Federal Goiano, Brazil; Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Pérez-Iglesias JM, Fanali LZ, Franco-Belussi L, Natale GS, De Oliveira C, Brodeur JC, Larramendy ML. Multiple Level Effects of Imazethapyr on Leptodactylus latinasus (Anura) Adult Frogs. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:492-506. [PMID: 34406426 DOI: 10.1007/s00244-021-00880-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Imazethapyr is an herbicide that is used in a variety of crops worldwide, including soybean and corn. The aim of the present study was to evaluate the biomarkers responses of adult Leptodactylus latinasus exposed to the formulation Pivot® H (10.59% imazethapyr) in the laboratory at concentrations and under conditions that simulate two potential field exposure scenarios: an immersion in field runoff (Scenario 1: 10 mg/L) and a direct exposure to the droplets emitted by spray noozles (Scenario 2: 1000 mg/L). In both scenarios, the experimental procedure involved completely immersing the frogs over a period of 15 s. Different endpoints were evaluated at several ecotoxicological levels 48 and 96 h after the herbicide exposure. These included individual (biometric indices and behavior alterations), histological (liver pigments and lesions), biochemical (catalase, glutathione system and cholinesterase activities) and genotoxic effects (micronuclei induction and nuclear abnormalities). Forty-eight hours after imazethapyr exposure, frogs submitted to Scenario 1 presented an inhibition of liver glutathione-S-transferase activity, whereas histological alterations and increased hepatic cholinesterase levels were observed in frogs exposed under Scenario 2. Ninety-six hours after exposure to the imazethapyr formulation, frogs from the Scenario 1 treatment presented a decrease in liver melanin and hemosiderin, increased hepatic catalase activity and micronuclei induction. For their part, frogs exposed to Scenario 2 presented a decrease in the hepatosomatic index, an increase in liver alterations, melanin reduction and micronuclei induction. The multivariate analysis enables correlations to be made between biomarkers of different organizational level in exposed anurans. Our result indicates that real exposure to imazethapyr formulations under field conditions may pose a risk to Leptodactylus latinasus populations living in the agroecosystems.
Collapse
Affiliation(s)
- J M Pérez-Iglesias
- Centro de Investigaciones del Medio Ambiente (CIM), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1904AMA, La Plata, Argentina.
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, CONICET, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA, La Plata, Argentina.
- Instituto de Química de San Luis, CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, D5700BWS, San Luis, Argentina.
| | - L Z Fanali
- Departamento de Biologia, Universidade Estadual Paulista, IBILCE-UNESP, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, 15054-000, Brazil
| | - L Franco-Belussi
- Departamento de Biologia, Universidade Estadual Paulista, IBILCE-UNESP, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, 15054-000, Brazil
- Laboratório de Patologia Experimental (LAPEx), Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande, Mato Grosso do Sul, Brasil
| | - G S Natale
- Centro de Investigaciones del Medio Ambiente (CIM), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1904AMA, La Plata, Argentina
| | - C De Oliveira
- Departamento de Biologia, Universidade Estadual Paulista, IBILCE-UNESP, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, 15054-000, Brazil
| | - J C Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), CONICET, Instituto Nacional de Tecnología Agropecuaria (INTA), B1686 , Hurlingham, Buenos Aires, Argentina
| | - M L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, CONICET, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA, La Plata, Argentina
| |
Collapse
|
10
|
Bourdineaud JP. Toxicity of the herbicides used on herbicide-tolerant crops, and societal consequences of their use in France. Drug Chem Toxicol 2020; 45:698-721. [PMID: 32543998 DOI: 10.1080/01480545.2020.1770781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In France, the implementation of mutant herbicide-tolerant crops and the use of the related herbicides - sulfonylureas and imidazolinones - have triggered a strong societal reaction illustrated by the intervening actions of environmentalist groups illegally mowing such crops. Trials are in progress, and therefore should be addressed the questions of the environmental risks and the toxicity of these herbicides for the animals and humans consuming the products derived from these plants. Regulatory authorities have allowed these mutant and herbicide-tolerant plants arguing that the herbicides against which they resist only target an enzyme found in 'weeds' (the acetolactate synthase, ALS), and that therefore all organisms lacking this enzyme would be endowed with immunity to these herbicides. The toxicological literature does not match with this argument: 1) Even in organisms displaying the enzyme ALS, these herbicides impact other molecular targets than ALS; 2) These herbicides are toxic for animals, organisms that do not possess the enzyme ALS, and especially invertebrates, amphibians and fish. In humans, epidemiological studies have shown that the use and handling of these toxins are associated with a significantly increased risk of colon and bladder cancers, and miscarriages. In agricultural soils, these herbicides have a persistence of up to several months, and water samples have concentrations of some of these herbicides above the limit value in drinking water.
Collapse
Affiliation(s)
- Jean-Paul Bourdineaud
- Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, CNRS, University of Bordeaux, Pessac, France.,CRIIGEN, Paris, France
| |
Collapse
|
11
|
Bhuyan K, Patar A, Singha U, Giri S, Giri A. Phenanthrene alters oxidative stress parameters in tadpoles of Euphlyctis cyanophlyctis (Anura, Dicroglossidae) and induces genotoxicity assessed by micronucleus and comet assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20962-20971. [PMID: 32253698 DOI: 10.1007/s11356-020-08609-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Phenanthrene (PHE), a tricyclic polycyclic aromatic hydrocarbon (PAH), is ubiquitously found in aquatic environments. It is one of the major components in PAH mixtures. It has been identified as one of the 16 priority PAHs for toxicological evaluations. PHE is reported to induce lethal and sub-lethal toxicity in various aquatic indicator organisms. However, no toxicological data of PHE in anuran amphibians could be found. Amphibian larvae (tadpoles) develop in aquatic habitats. Therefore, exposure to PHE could negatively impact their development and fitness in later periods as they move in to the terrestrial habitat following metamorphosis. In the present study, we have analyzed the effects of PHE in Euphlyctis cyanophlyctis tadpoles. PHE induced concentration-dependent lethal effects in the tadpoles. The estimated LC50 values were 16.52, 15.29, 13.69, and 12.28 mg/L at 24, 48, 72, and 96 h of exposure respectively. These LC50 values are significantly higher than the reported environmental concentration of PHE. However, the strong negative correlation (R2 = 0.997, p < 0.001) between the LC50 value and exposure time indicates that longer exposure to lower concentration may cause significant lethal effects. Besides, PHE at environmentally relevant concentrations induced significant sub-lethal toxicities. Exposure to sub-lethal concentrations was found to be genotoxic in erythrocyte micronucleus as well as comet assays. Sub-lethal concentrations of PHE significantly increased superoxide dismutase activity and tissue glutathione level as well as induced lipid peroxidation. The present findings clearly indicate that PHE is a potential threat to the early life stages of amphibians. Further investigations are necessary to ascertain the implications of these early effects during adult life stages.
Collapse
Affiliation(s)
- Krishna Bhuyan
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India
| | - Arabinda Patar
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India
| | - Utsab Singha
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India
| | - Sarbani Giri
- Molecular and Cell Biology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India
| | - Anirudha Giri
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India.
| |
Collapse
|