1
|
Jin R, Hu W, Zhou M, Lin F, Xu A. Caffeic acid derivative WSY6 protects melanocytes from oxidative stress by reducing ROS production and MAPK activation. Heliyon 2024; 10:e24843. [PMID: 38304822 PMCID: PMC10831733 DOI: 10.1016/j.heliyon.2024.e24843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Purpose Vitiligo is a chronic depigmentation disease caused by a loss of functioning melanocytes and melanin from the epidermis. Oxidative stress-induced damage to melanocytes is key in the pathogenesis of vitiligo. WSY6 is a caffeic acid derivative synthesized from epigallocatechin-3-gallate (EGCG). This study is to investigate whether the new chemical WSY6 protected melanocytes from H2O2-induced cell damage and to elucidate the underlying molecular mechanism. Patients and methods The present study compared the antioxidative potential of WSY6 with EGCG in hydrogen peroxide (H2O2)-treated PIG1 cells. Western blotting was used to study the protein expression of cyto-c, cleaved-caspase3, cleaved-caspase9, and the activation of MAPK family members, including p38, ERK1/2, JNK and their phosphorylation in melanocytes. ROS assay kit to detect intracellular reactive oxygen species production; CCK8 and lactate dehydrogenase leak assay to detect cytotoxicity. Results EGCG and WSY6 ameliorated H2O2-induced oxidative stress damage in PIG1 cells in a does-dependent manner, while WSY6 was much more effective. WSY6 reduced cellular ROS production, cytochrome c release, downregulated caspase-3 and caspase-9 activation. MAPK pathway signaling including phosphorylated p38, ERK and JNK were observed under oxidative stress and can be much protected by pre-treatment of WSY6. Conclusion These results indicated that WSY6 could be a more powerful antioxidant than EGCG and protect melanocytes against oxidative cytotoxicity.
Collapse
Affiliation(s)
| | | | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, PR China
| |
Collapse
|
2
|
Yu G, Song X, Chen Q, Zhou Y. Silencing of peroxiredoxin III inhibits formaldehyde-induced oxidative damage of bone marrow cells in BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2836-2844. [PMID: 37584494 DOI: 10.1002/tox.23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene. METHODS We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 μmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 μmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity. RESULTS High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis. CONCLUSION PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Xiangfu Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Qiang Chen
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Yutong Zhou
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
3
|
Çakır Gündoğdu A, Arı NS, Höbel A, Şenol G, Eldiven Ö, Kar F. Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells. Cureus 2023; 15:e44277. [PMID: 37772231 PMCID: PMC10531031 DOI: 10.7759/cureus.44277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Objective This study aims to explore the potential anti-cancer properties of boric acid (BA) in human endometrial cancer Ishikawa cells by assessing its influence on cell viability, apoptosis, oxidative stress, and inflammatory responses. Methods The impact of BA at concentrations ranging from 2.5 to 100 mM on cell viability was assessed in Ishikawa cells and normal fibroblast L929 cells (used as the control) through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Spectrophotometric measurements were performed to determine the total oxidant status (TOS) and total antioxidant status (TAS) in BA-treated cells, and the oxidative stress index (OSI) was calculated. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of cytochrome c and caspase 3, both of which are constituents of the extrinsic apoptotic pathway. Furthermore, changes in the concentrations of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in the cells were analyzed using ELISA and immunofluorescence staining. Results The exposure of Ishikawa cells to BA for 24 hours led to a dose-dependent decline in cell viability, with an IC50 value of 40 mM. BA dose-dependently increased cytochrome c and caspase 3 levels in cancer cells. In Ishikawa cells, BA treatment led to a significant elevation in OSI. Moreover, the concentrations of TNF-α and IL-1β exhibited a dose-dependent decrease in BA-treated cells. On the other hand, in L929 cells, BA decreased OSI in a dose-dependent manner but did not change TNF-α and IL-1β levels. Concentrations up to 80 mM had no effect on cell viability and apoptosis, but BA at 80 mM concentration decreased viability and increased cytochrome c and caspase 3 levels in L929 cells. Conclusion BA inhibited cell viability, triggered apoptosis, induced oxidative stress, and suppressed inflammatory responses in endometrial cancer cells. Notably, at its IC50 concentration, BA had no cytotoxic effect on normal fibroblasts. Given its favorable properties, BA may provide a valuable therapeutic option to impede the development and progression of endometrial cancer.
Collapse
Affiliation(s)
| | - Neziha Senem Arı
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Asiye Höbel
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Gülnihal Şenol
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Ömer Eldiven
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Fatih Kar
- Medical Biochemistry, Kutahya University of Health Sciences, School of Medicine, Kütahya, TUR
| |
Collapse
|
4
|
Zhao FF, Wang XL, Lei YT, Li HQ, Li ZM, Hao XX, Ma WW, Wu YH, Wang SY. A systematic review: on the mercaptoacid metabolites of acrylamide, N-acetyl-S-(2-carbamoylethyl)-L-cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88350-88365. [PMID: 37458885 DOI: 10.1007/s11356-023-28714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Acrylamide is widely found in a variety of fried foods and cigarettes and is not only neurotoxic and carcinogenic, but also has many potential toxic effects. The current assessment of acrylamide intake through dietary questionnaires is confounded by a variety of factors, which poses limitations to safety assessment. In this review, we focus on the levels of AAMA, the urinary metabolite of acrylamide in humans, and its association with other diseases, and discuss the current research gaps in AAMA and the future needs. We reviewed a total of 25 studies from eight countries. In the general population, urinary AAMA levels were higher in smokers than in non-smokers, and higher in children than in adults; the highest levels of AAMA were found in the population from Spain, compared with the general population from other countries. In addition, AAMA is associated with several diseases, especially cardiovascular system diseases. Therefore, AAMA, as a biomarker of internal human exposure, can reflect acrylamide intake in the short term, which is of great significance for tracing acrylamide-containing foods and setting the allowable intake of acrylamide in foods.
Collapse
Affiliation(s)
- Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Zhi-Ming Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Xiao Hao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China.
| |
Collapse
|
5
|
Yıldız K, Makav M, Adalı Y, Bulut M. Therapeutic Effects of Boric Acid in a Septic Arthritis Model Induced by Escherichia coli in Rats. Biol Trace Elem Res 2022; 200:4762-4770. [PMID: 35034263 DOI: 10.1007/s12011-021-03065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
Abstract
The study aimed to evaluate the therapeutic effect of boric acid (BA) in experimentally induced septic arthritis. A total of 30 rats, 6 rats in each group (5 groups), were used in the study. No treatment was applied to the rats in the control group. Only BA was administered intraperitoneally (IP) to the rats in the bor group. Escherichia coli was administered at a single dose of 25 μL, 1 × 1010 cfu/rat from the right foot pad of the rats, via intra-articular route, to the mice in the arthritis, arthritis-bor, and arthritis-antb groups. Then, BA at a dose of 50 mg/kg and cefazolin at a dose of 25 mg/kg were administered to the rats in the arthritis-bor and arthritis-antb groups, respectively, for 7 days via the IP route. At the end of the study, all animals were euthanized following the ethical rules. Blood and tissue samples were taken from the rats for biochemical and histopathological analyses. The levels of GSH, MDA, Endoglin, Endocan, and TNF-β markers were measured in the blood samples taken. A significant decrease was observed in MDA and Endoglin levels in the boric acid-administered group compared with the arthritis group, while a significant increase was observed at the GSH level. Histopathologically, it was determined that the reactive surrounding tissue response in the bor group was significantly reduced. As a result, a significant decrease in inflammation was found biochemically and histopathologically in the groups treated with BA.
Collapse
Affiliation(s)
- Kadri Yıldız
- Orthopeadia and Traumatology Department, Kafkas University Medical School, Ana Kampüs, 36000, Kars, Turkey.
| | - Mustafa Makav
- Physiology Department, Kafkas University Veterinary School, Kars, Turkey
| | - Yasemen Adalı
- Department of Pathology, Faculty of Medicine, Izmir University of Economics, İzmir, Turkey
| | - Menekşe Bulut
- Food Engineering Department, Faculty of Engineering, Igdır University, Igdır, Turkey
| |
Collapse
|
6
|
Penalva-Olcina R, Juan C, Fernández-Franzón M, Juan-García A. Effectiveness of beetroot extract in SH-SY5Y neuronal cell protection against Fumonisin B1, Ochratoxin A and its combination. Food Chem Toxicol 2022; 165:113164. [PMID: 35605710 DOI: 10.1016/j.fct.2022.113164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
Fumonisin B1 (FB1) and ochratoxin A (OTA) are fungal metabolites of worldwide concern because of their effect on human and animal health, as both have been classified by IARC as possible carcinogens (Group 2B). Beetroot is a source of dietary fiber, folic acid, and vitamin C, and some studies have demonstrated their antioxidant activity. Therefore, this work presents the cytoprotective effect of beetroot extract (BRE) on a neuroblastoma cell line (SH-SY5Y cells) exposed to FB1, OTA, and its combination. Cytotoxicity was studied by the MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, for 24 h and 48 h. Simultaneous treatment and pre-treatment strategies were tested with 1:512-1:2 and 1:0 dilutions of BRE, with a concentration range from 0.4 to 100 μM of FB1 and from 0.19 to 50 μM of OTA. IC50 values of 5.8 μM and 9.1 μM at 24 h and 48 h, respectively were obtained for OTA while no cytotoxic effect was detected at the concentrations tested for FB1. Cytoprotection with increased viability was obtained when the simultaneous BRE + OTA strategy was performed. Finally, better protection was observed in the pretreatment strategy in which cells were exposed 24 h previously to BRE, compared to that shown in the simultaneous assay.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| |
Collapse
|
7
|
Tian M, Xia P, Yan L, Gou X, Giesy JP, Dai J, Yu H, Zhang X. Toxicological Mechanism of Individual Susceptibility to Formaldehyde-Induced Respiratory Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6511-6524. [PMID: 35438505 DOI: 10.1021/acs.est.1c07945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the mechanisms of individual susceptibility to exposure to environmental pollutants has been a challenge in health risk assessment. Here, an integrated approach combining a CRISPR screen in human cells and epidemiological analysis was developed to identify the individual susceptibility to the adverse health effects of air pollutants by taking formaldehyde (FA) and the associated chronic obstructive pulmonary disease (COPD) as a case study. Among the primary hits of CRISPR screening of FA in human A549 cells, HTR4 was the only gene genetically associated with COPD susceptibility in global populations. However, the association between HTR4 and FA-induced respiratory toxicity is unknown in the literature. Adverse outcome pathway (AOP) network analysis of CRISPR screen hits provided a potential mechanistic link between activation of HTR4 (molecular initiating event) and FA-induced lung injury (adverse outcome). Systematic toxicology tests (in vitro and animal experiments) were conducted to reveal the HTR4-involved biological mechanisms underlying the susceptibility to adverse health effects of FA. Functionality and enhanced expression of HTR4 were required for susceptibility to FA-induced lung injury, and FA-induced epigenetic changes could result in enhanced expression of HTR4. Specific epigenetic and genetic characteristics of HTR4 were associated with the progression and prevalence of COPD, respectively, and these genetic risk factors for COPD could be potential biomarkers of individual susceptibility to adverse respiratory effects of FA. These biomarkers could be of great significance for defining subpopulations susceptible to exposure to FA and reducing uncertainty in the next-generation health risk assessment of air pollutants. Our study delineated a novel toxicological pathway mediated by HTR4 in FA-induced lung injury, which could provide a mechanistic understanding of the potential biomarkers of individual susceptibility to adverse respiratory effects of FA.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan Saskatoon, Saskatoon SK S7N 5B3, Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
8
|
Rajak C, Singh N, Parashar P. Metal toxicity and natural antidotes: prevention is better than cure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43582-43598. [PMID: 32951168 DOI: 10.1007/s11356-020-10783-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Toxicity due to heavy metals (HM), specifically mercury (Hg), arsenic (As), lead (Pb), and cadmium (Cd) remains a challenge to scientists till date. This review gives insights into natural antidotes for the management and prevention of HM toxicity. Various databases such as PubMed, Embase, and Science Direct were searched for available facts on natural antidotes and their commercial products against HM toxicity till date. Toxicity owing to such metals needs prevention rather than therapy. Natural antidotes, fruits and vegetables, rich in antioxidant are the answers to such toxicities. Synthetic chelators impart a major drawback of removing essential metals required for normal body function, along with the toxic one. Natural antioxidants are bestowed with scavenging and chelation properties and can be alternative for synthetic chelating agents. Natural compounds are abundantly available, economic, and have minimal side effects when compared with classical chelators. Prevention is better than cure and thus adding plentiful vegetables and fruits to our diet can combat HM toxicity-related illness. Graphical abstract.
Collapse
Affiliation(s)
- Chetan Rajak
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Near CRPF Base Camp, Ahmadpur urf Kamlapur, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Poonam Parashar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Near CRPF Base Camp, Ahmadpur urf Kamlapur, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP, 226025, India.
| |
Collapse
|