1
|
Yang S, Li Z, Ma C, Huang Y, Li H, Hu D, Liu H, Huangfu X. Cotransport of Thallium(I) and kaolinite colloids in quartz sand media containing sodium humate: Ionic strength, pH and kaolinite colloid concentration. J Environ Sci (China) 2025; 154:138-152. [PMID: 40049862 DOI: 10.1016/j.jes.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 05/13/2025]
Abstract
In real soil environments, humus, colloids and other components significantly affect pollutant migration behavior. Investigating Tl(I) and kaolinite colloids' cotransport in quartz sand media containing sodium humate (HA-Na) is vital for comprehending Tl(I) migration underground. This study examined the migration of Tl(I) and kaolinite colloids across varying pH levels (5, 7), ionic strengths (ISs) (1, 5, 50 mmol/L), and kaolinite colloid concentrations. Results indicate that lower IS and pH promote Tl(I) migration when transported alone. In cotransport system, kaolinite promotes Tl(I) migration under acidic conditions but inhibits it under neutral conditions, except at high kaolinite concentrations, where the effect shifts from inhibition to promotion. This is primarily due to changes in the zeta potential of quartz sand, HA-Na, and kaolinite, as well as Tl(I) adsorption after HA-Na and kaolinite occupy binding sites. Competitive adsorption between cations and Tl(I) also plays a significant role. Conversely, in individual system, higher IS and pH inhibit kaolinite migration, while increased kaolinite concentration promotes it. In cotransport system, Tl(I) promotes kaolinite migration under acidic conditions but inhibits it under neutral conditions, except at low kaolinite concentrations. This relates to changes in the zeta potential between kaolinite and the medium, as well as the retention of HA-Na in the column and its adsorption onto kaolinite. Competitive adsorption and binding site saturation also have an impact. This study enhances understanding of Tl(I) migration by revealing the dual effect of kaolinite colloids under different environmental conditions, contributing to better knowledge of Tl(I) fate and transport in natural environments.
Collapse
Affiliation(s)
- Shuangrui Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongye Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Die Hu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Huang Y, Xiao Z, Wu S, Zhang X, Wang J, Huangfu X. Biochemical transformation and bioremediation of thallium in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176028. [PMID: 39265674 DOI: 10.1016/j.scitotenv.2024.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Thallium (Tl) is a toxic element associated with minerals, and its redistribution is facilitated by both geological and anthropogenic activities. In the natural environment, the transformation and migration of Tl mediated by (micro)organisms have attracted increasing attention. This review presents an overview of the biochemical transformation of Tl and the bioremediation strategies for Tl contamination. In the environment, Tl exists in various forms and originates from diverse sources. The global distribution characteristics of Tl in various media are summarized here, while its speciation and toxicity mechanism to organisms are elucidated. Interactions between (micro)organisms and Tl are commonly observed in the environment. Microbial response mechanisms to typical Tl exposure are analyzed at both species and gene levels, and the possibility of microorganisms as bio-indicators for monitoring Tl contamination is also highlighted. The processes and mechanisms involved in the microbial and benthic mediated transformation of Tl, as well as its enrichment by plants, are discussed. Additionally, in situ bioremediation strategies for Tl contamination and bio-treatment techniques for Tl-containing wastewater are summarized. Finally, the existing knowledge gaps and future research challenges are emphasized, including Tl distribution characteristics in the atmosphere and ocean, the key molecular mechanisms underlying Tl transformation by organisms, the screening of potential Tl oxidizing microorganisms and hyperaccumulators, as well as the revelation of global biogeochemical cycling pathways of Tl.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhentao Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Huangfu X, Zhang Y, Wang Y, Ma C. The determination of thallium in the environment: A review of conventional and advanced techniques and applications. CHEMOSPHERE 2024; 358:142201. [PMID: 38692367 DOI: 10.1016/j.chemosphere.2024.142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Thallium (Tl) is a potential toxicity element that poses significant ecological and environmental risks. Recently, a substantial amount of Tl has been released into the environment through natural and human activities, which attracts increasing attention. The determination of this hazardous and trace element is crucial for controlling its pollution. This article summarizes the advancement and progress in optimizing Tl detection techniques, including atomic absorption spectroscopy (AAS), voltammetry, inductively coupled plasma (ICP)-based methods, spectrophotometry, and X-ray-based methods. Additionally, it introduces sampling and pretreatment methods such as diffusive gradients in thin films (DGT), liquid-liquid extraction, solid phase extraction, and cloud point extraction. Among these techniques, ICP-mass spectrometry (MS) is the preferred choice for Tl detection due to its high precision in determining Tl as well as its species and isotopic composition. Meanwhile, some new materials and agents are employed in detection. The application of novel work electrode materials and chromogenic agents is discussed. Emphasis is placed on reducing solvent consumption and utilizing pretreatment techniques such as ultrasound-assisted processes and functionalized magnetic particles. Most detection is performed in aqueous matrices, while X-ray-based methods applied to solid phases are summarized which provide non-destructive analysis. This work improves the understanding of Tl determination technology while serving as a valuable resource for researchers seeking appropriate analytical techniques.
Collapse
Affiliation(s)
- Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yifan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Yunzhu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Kowalska J, Drwal A, Tutaj K, Kovshun L, Krasnodębska-Ostręga B. On site separation of inorganic forms of thallium and arsenic in sea water systems followed by ICP-MS determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6082-6087. [PMID: 37929788 DOI: 10.1039/d3ay01292a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Reduction of Tl(III) and oxidation of As(III), which are unstable speciation forms, start just after sampling as a result of disturbed chemical equilibrium. Separation of inorganic Tl and As species, unchanged, is thus crucial for reliable results of speciation analysis in water systems. Presented here a simple and fast sample pretreatment, based on ion exchange cartridges, which gives the possibility to separate Tl and As species already on the sampling site. Note the reduction of Tl(III) (15%) is in the range of losses typical for standard procedures based on Tl(III) fixation. The use of SCX-3 allows for Tl(III) and SAX for As(III) separation, which are then quantitated in the effluent by ICP-MS. Determination of non-retained species was done after reduction of the sample volume to 2 mL (50-fold preconcentration), which allowed for detection of As concentrations <0.1 ppb and Tl <0.01 ppb. For As, a collision chamber is required. The possibility of direct determination is very important for the forms being in trace amounts in sea water in the vicinity of harbors.
Collapse
Affiliation(s)
- Joanna Kowalska
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | - Alicja Drwal
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | - Klaudia Tutaj
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | - Lidiia Kovshun
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093, Warsaw, Poland.
| | | |
Collapse
|
5
|
Huang Y, Wang D, Jiang J, Gong J, Liu Y, Li L, Kong L, Ruan Y, Lv H, Chen Y, Chen Z, Liang Q, Chen D. Release and mobility characteristics of thallium from polluted farmland in varying fertilization: Role of cation exchange. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131928. [PMID: 37379595 DOI: 10.1016/j.jhazmat.2023.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Batch and column leaching tests were used to study thallium's release and migration behaviour and evaluate its potential toxicity risks in soil. The results indicated that leaching concentrations of Tl using TCLP and SWLP were much higher than the threshold, indicating a high risk of thallium pollution in the soil. Furthermore, the intermittent leaching rate of Tl by Ca2+ and HCl reached its maximum value, demonstrating the easy release of Tl. After HCl leaching, the form of Tl in the soil has changed, and ammonium sulfate has increased its extractability. Additionally, the extensive application of calcium promoted the release of Tl, increasing its potential ecological risk. Spectral analysis showed that Tl was mainly present in minerals such as Kaolinite and Jarosite, and exhibited significant adsorption capacity for Tl. HCl and Ca2+ damaged the crystal structure of the soil, greatly enhancing the migration and mobility of Tl in the environment. More importantly, XPS analysis confirmed that the release of Tl (I) in the soil was the leading cause of increased mobility and bioavailability. Therefore, the results revealed the risk of Tl release in the soil, providing theoretical guidance for its pollution prevention and control.
Collapse
Affiliation(s)
- Ying Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Dexin Wang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Junhong Jiang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jian Gong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yuxian Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Long Li
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Linjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yang Ruan
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hang Lv
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yongheng Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zibiao Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Qi Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
6
|
Ahmed MJ, Mia ML. A new simple, highly sensitive and selective spectrofluorimetric method for the speciation of thallium at pico-trace levels in various complex matrices using N-(pyridin-2-yl)-quinoline-2-carbothioamide. RSC Adv 2021; 11:32312-32328. [PMID: 35495515 PMCID: PMC9042067 DOI: 10.1039/d1ra05388d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
A very simple and non-extractive new spectrofluorimetric method for the determination of TlI and TlIII individually and for mixtures of both analytes at pico-trace levels using N-(pyridin-2-yl)-quinoline-2-carbothioamide (PQCTA) has been developed.
Collapse
Affiliation(s)
- Mohammed Jamaluddin Ahmed
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| | - Muhammad Lajin Mia
- Department of Chemistry, Laboratory of Analytical Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|