1
|
Oh H, Lee JS, Kim S, Lee JH, Shin YC, Choi WI. Super-Antioxidant Vitamin A Derivatives with Improved Stability and Efficacy Using Skin-Permeable Chitosan Nanocapsules. Antioxidants (Basel) 2023; 12:1913. [PMID: 38001766 PMCID: PMC10669859 DOI: 10.3390/antiox12111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Retinyl palmitate (RP) is a retinol ester with strong antioxidant and anti-inflammatory properties as an antiwrinkle agent. However, it has poor aqueous solubility and easily degrades into inactive forms for topical applications. Therefore, we developed chitosan-coated nanocapsules (ChiNCs) to encapsulate RP using a simple nanoprecipitation method for protection against physiological conditions and to enable deep skin penetration. The as-prepared RP-loaded nanocapsules (RP@ChiNCs) loaded with approximately 5 wt.% RP exhibited a hydrodynamic diameter of 86 nm and surface charge of 24 mV. They had adequate stability to maintain their physicochemical properties after lyophilization in a biological buffer. Notably, ChiNCs provided RP with remarkable protection against degradation for 4 weeks at 37 °C. Thus, RP@ChiNCs exhibited good antioxidant activity in situ for sufficiently long periods without considerable changes in their efficacy. Furthermore, ChiNCs enhanced the skin penetration of lipophilic RP based on the inherent nature of chitosan. RP@ChiNCs exhibited good in vitro antioxidant and anti-inflammatory effects without causing any cytotoxicity in dermal fibroblasts. Accordingly, they promoted cell proliferation in a wound-scratch test and enhanced collagen synthesis. These results suggest that RP@ChiNCs are promising candidates for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
| | - Jeung-Hoon Lee
- SKINMED Co., Ltd., Daejeon 34028, Republic of Korea; (J.-H.L.); (Y.C.S.)
| | - Yong Chul Shin
- SKINMED Co., Ltd., Daejeon 34028, Republic of Korea; (J.-H.L.); (Y.C.S.)
- Amicogen Inc., 64 Dongburo, 1259, Jinju 52621, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
| |
Collapse
|
2
|
Hedfi A, Allouche M, Hoineb F, Ali MB, Harrath AH, Albeshr MF, Mahmoudi E, Beyrem H, Karachle PK, Urkmez D, Pacioglu O, Badraoui R, Boufahja F. The response of meiobenthinc sediment-dwelling nematodes to pyrene: Results from open microcosms, toxicokinetics and in silico molecular interactions. MARINE POLLUTION BULLETIN 2022; 185:114252. [PMID: 36272318 DOI: 10.1016/j.marpolbul.2022.114252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
An experiment conducted with 'open microcosm' made by connected sedimentary compartments with different qualities was for 30 days to evaluate the migratory behaviour of nematodes as induced by exposure to pyrene. The nematofauna was collected along with sediment from a reference site in Bizerte lagoon. Following one week acclimatization period, the populated sediments were topped with azoic sediments, with a pyrene concentration of 150 μg kg-1. The concentration of pyrene from sediments was measured on a weekly basis. A stable status of nematode assemblages was reached between the upper and lower compartments in each microcosm, whatever the treatment type. An upward exploratory phase was observed during the first two weeks within the assemblages, possibly induced by the repellent chemodetection of pyrene. This observation was confirmed by the toxicokinetic properties and molecular interactions of pyrene with the germ-line development Protein 3 and sex-determining protein of Caenorhabditis elegans as nematode model.
Collapse
Affiliation(s)
- Amor Hedfi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Faten Hoineb
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Manel Ben Ali
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Fahad Albeshr
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Ezzeddine Mahmoudi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Paraskevi K Karachle
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland waters, 46.7 Athens-Sounio Ave., P.O. Box 712, 19013 Anavyssos, Attika, Greece
| | - Derya Urkmez
- Sinop University, Scientific and Technological Research and Application Center, TR57000 Sinop, Turkey
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Riadh Badraoui
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta, Tunis, Tunisia
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|
3
|
Geahchan S, Baharlouei P, Rahman A. Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Mar Drugs 2022; 20:61. [PMID: 35049916 PMCID: PMC8780088 DOI: 10.3390/md20010061] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Marine organisms harbor numerous bioactive substances that can be utilized in the pharmaceutical and cosmetic industries. Scientific research on various applications of collagen extracted from these organisms has become increasingly prevalent. Marine collagen can be used as a biomaterial because it is water soluble, metabolically compatible, and highly accessible. Upon review of the literature, it is evident that marine collagen is a versatile compound capable of healing skin injuries of varying severity, as well as delaying the natural human aging process. From in vitro to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast migration as well as vascularization of the skin. Additionally, marine collagen and derivatives have proven beneficial and useful for both osteoporosis and osteoarthritis prevention and treatment. Other bone-related diseases may also be targeted by collagen, as it is capable of increasing bone mineral density, mineral deposition, and importantly, osteoblast maturation and proliferation. In this review, we demonstrate the advantages of marine collagen over land animal sources and the biomedical applications of marine collagen related to bone and skin damage. Finally, some limitations of marine collagen are briefly discussed.
Collapse
Affiliation(s)
- Sarah Geahchan
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada
| | - Parnian Baharlouei
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- Physiology and Human Biology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Azizur Rahman
- Centre for Climate Change Research, University of Toronto, ONRamp, Toronto, ON M5G 1L5, Canada
- A.R. Environmental Solutions Inc., ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
4
|
Hedfi A, Ben Ali M, Noureldeen A, Darwish H, Saif T, Albogami B, Altowairqi TK, Boufahja F. Impact of treated sewage on meiobenthic nematodes: a case study from the Tunisian Refining Industries Company. BRAZ J BIOL 2022; 82:e246116. [DOI: 10.1590/1519-6984.246116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Abstract The main objective of the current study was to assess the impact of the water taken from the ‘Tunisian Refining Industries Company’ on meiobenthic nematodes, before and after a series of treatments in decantation basins followed by its discharge in Bizerte bay, Tunisia. The comparison of environmental parameters of the two types of water was clearly indicative of an improvement in the quality of treated waters after a significant reduction in their loads in hydrocarbons. Overall, the water retained a good quality after being treated by ‘Tunisian Refining Industries Company’ before discharge in the sea. At the end of the experiment, differential responses were observed according to the richness of sediment in organic matter and hydrocarbons. Thus, it was apparent that the nematode assemblage exposed to the treated waters was closer to controls and associated to higher values of abundance, than that under untreated ones. It was also assumed that the species Microlaimus honestus De Man, 1922, Paramonohystera proteus Wieser, 1956 and Cyartonema germanicum Juario, 1972 are sensitive bioindicators of bad environmental statues and of hydrocarbon presence in the environment. On the other hand, Metoncholaimus pristiurus (Zur Strassen, 1894) Filipjev, 1918 would rather be classified as a positive bioindicative species of this type of pollutants.
Collapse
Affiliation(s)
- A. Hedfi
- Taif University, Saudi Arabia; Faculty of Sciences of Bizerte, Tunisia
| | - M. Ben Ali
- Taif University, Saudi Arabia; Faculty of Sciences of Bizerte, Tunisia
| | - A. Noureldeen
- Taif University, Saudi Arabia; Mansoura University, Egypt
| | - H. Darwish
- Taif University, Saudi Arabia; Agriculture Research Center, Egypt
| | - T. Saif
- National Institute of Oceanography and Fisheries, Egypt
| | | | | | | |
Collapse
|
5
|
Essid N, Faiza M, Hedfi A, Almalki M, Urkmez D, Boufahja F. Toxicity of synthetic Endocrine Disrupting Compounds on meiofauna: Estradiol benzoate as a case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117300. [PMID: 33971469 DOI: 10.1016/j.envpol.2021.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
An experimental study was carried out to determine the effects of the enrichment of sediments by endocrine perturbators on free-living nematodes from the Ghar El Melh lagoon, Tunisia. For 30 days, four concentrations of Estradiol Benzoate (hereafter EB) (0.43, 4.3, 8.6 and 12.9 ng l-1). The average nematode abundances showed a significant increase after the introduction of EB in their close environment. In contrast, the taxonomic examination has shown a decrease in species diversity of nematodes. The ordination of treatments according to the nMDS showed a clear structural separation of the enriched replicates with EB from controls based on species lists, in particular for concentrations EB3 and EB4. Indeed, under such conditions, the nematofauna exhibited a more remarkable presence of a new record for Science Theristus n. sp. and a decrease in relative abundances of Paracomesoma dubium. On feeding level, a predominance of non-selective deposit-feeders and a decline in proportions of epistrate feeders and carnivorous omnivores was observed with increasing concentrations of EB. Furthermore, in treated replicates with EB, females discernibly showed an increase compared to controls. Overall, EB affect significantly features of meiobenthic nematodes starting from the concentration of 4.3 ng l-1.
Collapse
Affiliation(s)
- Naceur Essid
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Biomonitoring of the Environment, 7021, Zarzouna, Tunisia
| | - Manel Faiza
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Biomonitoring of the Environment, 7021, Zarzouna, Tunisia
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Almalki
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Derya Urkmez
- Sinop University, Scientific and Technological Research and Application Center, TR57000, Sinop, Turkey
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Biomonitoring of the Environment, 7021, Zarzouna, Tunisia.
| |
Collapse
|
6
|
Allouche M, Nasri A, Harrath AH, Mansour L, Alwasel S, Beyrem H, Plăvan G, Rohal-Lupher M, Boufahja F. Meiobenthic nematode Oncholaimus campylocercoides as a model in laboratory studies: selection, culture, and fluorescence microscopy after exposure to phenanthrene and chrysene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29484-29497. [PMID: 33560507 DOI: 10.1007/s11356-021-12688-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Numerous studies have focused on the response of meiofauna after exposure to polycyclic aromatic hydrocarbons (PAHs), but none has been devoted to their uptake into nematode body compartments. The present study monitored PAH uptake by Oncholaimus campylocercoides which was selected after 40 days in the laboratory through original protocols from natural sediments collected in the Old Harbor of Bizerte, Tunisia. To achieve the mono-species level, a grain size magnification was applied by gradually adding a biosubstrate made from either the crushed shells of Mytilus galloprovincialis or minced leaves of Posidonia oceanica. After selection, O. campylocercoides was cultured and fed with earthworm powder (560 mg.l-1). Thereafter, it was exposed for 3 weeks to phenanthrene and chrysene (38, 116, and 348 ppb). Fluorescence microscopy revealed higher intensities of PAHs at the spicules, mouths, and pharynges compared with the other organs considered. Moreover, the buccal fluorescence showed a significant correlation with that measured in the biosubstrate made with shells of M. galloprovincialis.
Collapse
Affiliation(s)
- Mohamed Allouche
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Ahmed Nasri
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Gabriel Plăvan
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
7
|
Ben Ali M, Hedfi A, Almalki M, Karachle PK, Boufahja F. Toxicity of hydroxychloroquine, a potential treatment for COVID-19, on free-living marine nematodes. MARINE POLLUTION BULLETIN 2021; 167:112361. [PMID: 33873039 PMCID: PMC8049378 DOI: 10.1016/j.marpolbul.2021.112361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
On March 2020, hydroxychloroquine (HCQ) was recommended as a treatment for COVID-19 high risk patients. Following the massive and widespread use of HCQ worldwide, a discernible high quantity is anticipated to end-up through the sewage systems in marine coastal areas. A closed microcosm study was undertaken herein for 30 days where meiobenthic nematodes were exposed to a range of HCQ concentrations (3.162, 31.62 and 63.24 μg.ml-1). After one month of exposure in HCQ, the total abundances and Shannon-Wiener index of the assemblages decreased, whereas the individual mass and the Trophic Diversity Index increased at the highest concentrations. Overall, a numerical negative impact was observed for the epistrate feeders and non-selective deposit feeders, however, this benefited to the omnivores-carnivores, and particularly to the Oncholaimids. Such responses of the nematodes 2B and the corresponding taxa are bioindicative of current- or post-COVID-19 crisis risks in relation with the bioaccumulation of HCQ in seafood.
Collapse
Affiliation(s)
- Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed Almalki
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Paraskevi K Karachle
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland waters, 46.7 Athens-Sounio Ave., P.O. Box 712, 19013 Anavyssos Attika, Greece
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Biomonitoring of the Environment, 7021 Zarzouna, Tunisia.
| |
Collapse
|
8
|
Hedfi A, Ben Ali M, Hassan MM, Albogami B, Al-Zahrani SS, Mahmoudi E, Karachle PK, Rohal-Lupher M, Boufahja F. Nematode traits after separate and simultaneous exposure to Polycyclic Aromatic Hydrocarbons (anthracene, pyrene and benzo[a]pyrene) in closed and open microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116759. [PMID: 33639491 DOI: 10.1016/j.envpol.2021.116759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The majority of experimental studies carried out to date, regarding the effects of pollutants on meiofauna have been conducted by means of closed systems, and rarely using open ones. The current work explored the impact of three Polycyclic Aromatic Hydrocarbons (PAHs), anthracene, pyrene and benzo[a]pyrene, applied alone or combined, on meiobenthic nematodes using both systems. The results revealed that single PAHs impacted the nematofauna similarly in closed or open systems with a higher toxicity observed for benzo[a]pyrene. However, the closed microcosms contaminated with PAHs became organically enriched, resulting in more non-selective deposit feeders and omnivores-carnivores. Taxonomic and functional effects related to combinations of PAHs were close to those of individual treatments in closed systems, however, for open ones, the outcomes were different. The caudal morphology influenced the response of taxa during their avoidance/endurance of hydrocarbons in open systems where the effects of PAHs mixtures appeared not only additive but also synergetic. Based on the results of the study, the use of open systems is preferred to closed ones as the research outcomes were more accurate and representing better conditions prevailing in nature.
Collapse
Affiliation(s)
- Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| | - Montaser M Hassan
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; Zoology Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt.
| | - Bander Albogami
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Samia S Al-Zahrani
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Ezzeddine Mahmoudi
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| | - Paraskevi K Karachle
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 Athens-Sounio Ave., P.O. Box 712, 19013, Anavyssos, Attika, Greece.
| | - Melissa Rohal-Lupher
- Texas Water Development Board, 1700 North Congress Avenue, Austin, TX, 78701, USA.
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia.
| |
Collapse
|
9
|
Essid N, Allouche M, Lazzem M, Harrath AH, Mansour L, Alwasel S, Mahmoudi E, Beyrem H, Boufahja F. Ecotoxic response of nematodes to ivermectin, a potential anti-COVID-19 drug treatment. MARINE POLLUTION BULLETIN 2020; 157:111375. [PMID: 32658716 PMCID: PMC7287431 DOI: 10.1016/j.marpolbul.2020.111375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
At the end of March 2020, ivermectin was confirmed as a drug for COVID-19 treatment. A significant amount of ivermectin could deposit into sediments of the semi-closed Mediterranean Sea, where three European COVID-19 epicenters are located: Italy, Spain, and France. Meiobenthic nematodes were exposed to three ivermectin doses (1.8 ng.g-1, 9 ng.g-1, and 18 ng.g-1) for 10 days. Ivermectin caused a great reduction in abundance. However, the diversity indices decreased only at high doses. Ivermectin disadvantaged the 1B-Cr-Id functional type (non-selective deposit feeders and nematodes with circular or indistinct amphids) and benefited the 2A-REL-Sp type (epistrate feeders and nematodes with rounded or elongated loop amphids). Thus, Trophic Diversity and Amphideal Diversity index values increased with sedimentary ivermectin enrichment. Large amphideal foveas were more efficient for 2A-REL-Sp nematodes to avoid ivermectin. The responses of the functional type 2A-REL-Sp and corresponding taxa predict post-COVID-19 environmental concerns and the bioaccumulation of ivermectin in seafoods.
Collapse
Affiliation(s)
- Naceur Essid
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Mounira Lazzem
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Lamjed Mansour
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Ezzeddine Mahmoudi
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|