1
|
Elgarahy AM, Eloffy MG, Saber AN, Abouzid M, Rashad E, Ghorab MA, El-Sherif DM, Elwakeel KZ. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and polyfluoroalkyl substances: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1209. [PMID: 39556161 DOI: 10.1007/s10661-024-13334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals, possess unique properties that have rendered them indispensable in various industries and consumer goods. However, their extensive use and persistence in the environment have raised concerns about their potential repercussions on human health and the ecosystem. This review provides insights into the sources, occurrence, transformation, impacts, fate, monitoring, and remediation strategies for PFAS. Once released into the environment, these chemicals undergo intricate transformation processes, such as degradation, bioaccumulation, and biomagnification, which result in their far-reaching distribution and persistence. Their chemical stability results in persistent pollution, with far-reaching ecological and human health implications. Remediation strategies for PFAS are still in their infancy, and researchers are exploring innovative and sustainable methods for treating contaminated environments. Promising technologies such as adsorption, biodegradation, and electrochemical oxidation have shown the potential to remove PFAS from contaminated sites, yet the search for more efficient and sustainable solutions continues. In conclusion, this review emphasizes the urgent need for continued research and innovation to address the global environmental challenge posed by PFAS. As we move forward, it is imperative to prioritize sustainable solutions that minimize the detrimental consequences of these substances on human health and the environment.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, 14071, Cordoba, Spain
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Emanne Rashad
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Environmental Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Zhang C, Dong J, Zhang P, Sun L, Yang L, Wang W, Zou X, Chen Y, Shang Q, Feng D, Zhu G. Unique fluorophilic pores engineering within porous aromatic frameworks for trace perfluorooctanoic acid removal. Natl Sci Rev 2023; 10:nwad191. [PMID: 37671322 PMCID: PMC10476896 DOI: 10.1093/nsr/nwad191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 09/07/2023] Open
Abstract
Perfluorooctanoic acid (PFOA), a representative of per/polyfluorinated alkyl substances, has become a persistent water pollutant of widespread concern due to its biological toxicity and refractory property. In this work, we design and synthesize two porous aromatic frameworks (PAF) of PAF-CF3 and PAF-C2F5 using fluorine-containing alkyl based monomers in tetrahedral geometry. Both PAFs exhibit nanosized pores (∼1.0 nm) of high surface areas (over 800 m2 g-1) and good fluorophilicity. Remarkable adsorption capacity (˃740 mg g-1) and superior efficiency (˃24 g mg-1 h-1) are achieved toward the removal of PFOA with 1 μg L-1 concentration owing to unique C-F···F-C interactions. In particular, PAF-CF3 and PAF-C2F5 are able to reduce the PFOA concentration in water to 37.9 ng L-1 and 43.3 ng L-1, below EPA regulations (70 ng L-1). The reusability and high efficiency give both PAFs a great potential for sewage treatment.
Collapse
Affiliation(s)
- Chi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Junchao Dong
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Panpan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Liu Yang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Yunning Chen
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Qingkun Shang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Danyang Feng
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| |
Collapse
|
3
|
Sahu O. Remediation of perfluorooctanoic acid (PFOA) with nano ceramic clay: Synthesis, characterization, scale-up and regenerations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121241. [PMID: 36764378 DOI: 10.1016/j.envpol.2023.121241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Perfluorooctanoic acid (PFOA) in the ecosystem, resulting from industrial effluent and water bodies, has attracted greater concern. An economical treatment is in demand to optimize the current issue. In this research work, Perfluorooctanoic Acid was treated from drinking water sources with nano-ceramic clay. The ceramic clay was synthesized and characterized with Fourier infrared transformation, scanning electron micrograph, transmission electron micrograph, x-ray diffraction, and thermal analysis. An adsorption process was performed in batch and continuous modes for the effective conditions for maximum removal. In batch mode 82 ± 12 nm ceramic clay particle size; 3.0 initial pH; 210 rpm agitation 1.2 mg/L PFOA concentration; 100 mg/L clay dosage; 27 °C temperature, and 20hrs experimental time shows maximum 99.15% adsorption. The experimental data is well fitted with kinetics, isotherms, and thermodynamics calculated data. In fixed bed, continuous column study 10 h treatment time, 10 cm of bed height, and 2 ml/min were adsorbed 99.99% of PFOA. The experimental data from the fixed bed adsorption equipment was correlated using a number of different mathematical models, including the Thomas, Adams-Bohart, Yoon-Nelson, and Clark models. Overall nano ceramic clay was found to potential adsorbent for Perfluorooctanoic acid removal.
Collapse
Affiliation(s)
- Omprakash Sahu
- Department of Chemical Engineering, UIE, Chandigarh University, Mohali, India.
| |
Collapse
|
4
|
Lei X, Lian Q, Zhang X, Karsili TK, Holmes W, Chen Y, Zappi ME, Gang DD. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121138. [PMID: 36702432 DOI: 10.1016/j.envpol.2023.121138] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have drawn great attention due to their wide distribution in water bodies and toxicity to human beings. Adsorption is considered as an efficient treatment technique for meeting the increasingly stringent environmental and health standards for PFAS. This paper systematically reviewed the current approaches of PFAS adsorption using different adsorbents from drinking water as well as synthetic and real wastewater. Adsorbents with large mesopores and high specific surface area adsorb PFAS faster, their adsorption capacities are higher, and the adsorption process are usually more effective under low pH conditions. PFAS adsorption mechanisms mainly include electrostatic attraction, hydrophobic interaction, anion exchange, and ligand exchange. Various adsorbents show promising performances but challenges such as requirements of organic solvents in regeneration, low adsorption selectivity, and complicated adsorbent preparations should be addressed before large scale implementation. Moreover, the aid of decision-making tools including response surface methodology (RSM), techno-economic assessment (TEA), life cycle assessment (LCA), and multi criteria decision analysis (MCDA) were discussed for engineering applications. The use of these tools is highly recommended prior to scale-up to determine if the specific adsorption process is economically feasible and sustainable. This critical review presented insights into the most fundamental aspects of PFAS adsorption that would be helpful to the development of effective adsorbents for the removal of PFAS in future studies and provide opportunities for large-scale engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, PR China
| | - Tolga K Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| |
Collapse
|
5
|
He E, Liu N, Zhou Y, Wang Z, Lu X, Yu L. Adsorption properties and mechanism of zinc acrylic carbon nanosphere aggregates for perfluorooctanoic acid from aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120540. [PMID: 36370977 DOI: 10.1016/j.envpol.2022.120540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
This study found that the cross-linkable zinc acrylic nanosphere aggregates (NAs) as precursors were successfully prepared by a simple one-step synthesis route, and Zn,O dopped-carbon nanocomposites were obtained through temperature-controllable engineering, which showed excellent adsorption capacities for perfluorooctanoic acid (PFOA). A series of experiments were performed to investigate and compare carbon materials for the efficient removal of PFOA. The maximum adsorption capacities of PFOA absorbed on carbon nanospheres aggregates (CNAs) were calculated by the Langmuir (360.98 mg/g) and Sips models (309.65 mg/g). The kinetic model indicated there was chemical adsorption and physical adsorption in the adsorption process. Van der Waals force and electrostatic interactions might be the dominant mechanism of the adsorption process. Additionally, pore-filling also played a role in the adsorption process. Furthermore, the adsorption efficiency was still above 90% after five cycles. The selective adsorption ability was tested through various pollutants (metal ions and dye solutions) absorbed by the CNAs. Our results proved that carbon nanosphere aggregates (CNAs) are expected to be outstanding adsorption materials for the decontamination of PFOA from wastewater.
Collapse
Affiliation(s)
- Enhui He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ning Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Yu Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zheng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Xiaolan Lu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266100, PR China.
| |
Collapse
|
6
|
Zhang P, Zhou H, Xu Z, Li W, Guan Y, Feng L. Study on the adsorption mechanism of Chloride ion in aqueous solution on Mg/Al-CLDH modified by High temperature calcination. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Ighalo JO, Yap PS, Iwuozor KO, Aniagor CO, Liu T, Dulta K, Iwuchukwu FU, Rangabhashiyam S. Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nano-adsorbents: A review. ENVIRONMENTAL RESEARCH 2022; 212:113123. [PMID: 35339467 DOI: 10.1016/j.envres.2022.113123] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The intensification of urbanisation and industrial activities significantly exacerbates the distribution of toxic contaminations into the aqueous environment. Persistent organic pollutants (POPs) have received considerable attention in the past few decades because of their persistence, long-distance migration, potential bioaccumulation, latent toxicity for humans and wildlife. There is no doubt that POPs cause serious effects on the global ecosystem. Therefore, it is necessary to develop a simple, safe and sustainable approach to remove POPs from water bodies. Among other conventional techniques, the adsorption process has proven to be a more effective method for eliminating POPs and to a larger extent meet discharge regulations. Nanomaterials can effectively adsorb POPs from aqueous solutions. For most POPs, a >70% adsorptive removal efficiency was achieved. The major mechanisms for POPS uptake by nano-adsorbents includes electrostatic interaction, hydrophobic (van der Waals, π-π and electron donor-acceptor) interaction and hydrogen bonding. Nano-adsorbent can sustain a >90% POPs adsorptive removal for about 3 cycles and reuseable for up to 10 cycles. Challenges around adsorbent ecotoxicity and safe disposal were also discussed. The present review evaluated recent research outcomes on nanomaterials that are employed to remove POPs in water systems.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria; Department of Chemical Engineering, University of Ilorin, P. M. B., 1515, Ilorin, Nigeria.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Kingsley O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Chukwunonso O Aniagor
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Tianqi Liu
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Kanika Dulta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, India
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Selvasembian Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
8
|
Li Q, Zhu S, Chen F, Guo C. Functional group modified 1D interpenetrated metal-organic frameworks on perfluorooctanoic acid adsorption: Experimental and theoretical calculation study. ENVIRONMENTAL RESEARCH 2022; 211:113083. [PMID: 35276196 DOI: 10.1016/j.envres.2022.113083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Functional groups modified metal-organic frameworks (MOFs) was synthesized via a pre-tailor method and served as an adsorbent for perfluorooctanoic acid (PFOA) removal. The material was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and N2 sorption-desorption. Monte Carlo simulation and molecular dynamics are derived to predict the possible molecular packing and adsorption mechanism. The Hirshfeld surface with reduced density gradient analysis demonstrates that PFOA is adsorbed on MOF-X mainly affected by van der Waals interactions and steric effects. Adsorption kinetics and isotherms were investigated on the basis of a static experiment. The pseudo-second-order kinetic model and Langmuir isotherm were fitted well to characterize adsorption process. Hereinto, amino-modified MOFs reached the highest adsorption efficiency and the maximum capacity was 185.6 mg/g. Combing the experimental data with theoretical simulation, results indicated that functional group modification is an effective approach to alter the crystal structure and then affect the adsorptive properties of MOFs.
Collapse
Affiliation(s)
- Qiulin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, PR China
| | - Simin Zhu
- China Fire and Rescue Institute, Beijing, 102200, PR China
| | - Feng Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, PR China.
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, PR China; Jiangsu Laboratory for Biochemical Sensing and Biochip, Suzhou University of Science and Technology, Suzhou, 215011, PR China; Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou University of Science and Technology, Suzhou, 215011, PR China.
| |
Collapse
|
9
|
Yang Y, Gu Y, Lin H, Jie B, Zheng Z, Zhang X. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol. J Colloid Interface Sci 2022; 608:2884-2895. [PMID: 34802757 DOI: 10.1016/j.jcis.2021.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
P-nitrophenol (PNP), a widely used compound, is harmful to the environment and human health. In this study, four iron-based Prussian blue analogs (PBAs) were prepared by coprecipitation (Co-Fe PBA, Mn-Fe PBA, Cu-Fe PBA and Fe-Fe PBA). The Co-Fe PBA exhibited high peroxymonosulfate (PMS) activation performance for PNP degradation, removing over 90% of PNP in 60 min at an optimal pH of 7, temperature at 30 ℃, initial concentration of 20 mg/L, PBA dose of 0.2 g/L and PMS dose of 1 g/L. The physicochemical properties of the Co-Fe PBA were investigated by various characterization methods. The catalytic activity of PBA and the influence of various process parameters and water quality on the catalytic reaction were investigated to elucidate the mechanism of p-nitrophenol degradation by PBA-activated persulfate. Moreover, the mechanism of accelerated degradation of PNP under HCO3- conditions and the role of major reactive oxides were determined by EPR measurement methods and free radical trapping experiments. HCO3- was found to directly activate PMS to produce reactive oxygen species, and 1O2, ∙OH and SO4∙- were all greatly increased. This work presents a promising green heterogeneous catalyst for the degradation of emerging contaminants (ECs) in real wastewater with natural organic matter and coexisting anions by PMS activation.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yixin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huidong Lin
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Borui Jie
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Lv B, Xu K, Fang C, Yang Q, Li N, Jiang P, Wang W. Study on the performance of laterite in removing graphene oxide contaminants from aqueous solution. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To remove graphene oxide contaminant from aqueous solution, laterite was used as an adsorbent to conduct batch adsorption experiments on graphene oxide aqueous solutions. The effects of pH, adsorbent mass, graphene oxide initial concentration, contact time, and temperature on graphene oxide adsorption by laterite were studied predominantly. The results show that graphene oxide adsorption by laterite strongly depends on pH, the kinetic data conforms to the second-order kinetic model, and the isotherm data are in line with Langmuir and Freundlich models. Moreover, temperature increment is more conducive to improving the adsorption capacity. Combined with scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman microscopic tests, the internal changes of samples before and after adsorption were further revealed. The comprehensive analysis of the above experimental results shows that laterite is a good material, which can effectively remove graphene oxide contamination from aqueous solutions.
Collapse
Affiliation(s)
- Beifeng Lv
- School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
| | - Kaitong Xu
- School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
| | - Chulei Fang
- School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
| | - Qingqian Yang
- School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
| | - Na Li
- School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
| | - Ping Jiang
- School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
| | - Wei Wang
- School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
| |
Collapse
|
11
|
Huo J, Min X, Dong Q, Xu S, Wang Y. Comparison of Zn-Al and Mg-Al layered double hydroxides for adsorption of perfluorooctanoic acid. CHEMOSPHERE 2022; 287:132297. [PMID: 34555580 DOI: 10.1016/j.chemosphere.2021.132297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS), a large class of synthesized chemicals, are persistent in nature and generally recalcitrant to conventional chemical and biological treatment. Adsorption is considered an economical and practical method for PFAS treatment. Layered double hydroxides (LDHs) represent a promising class of mineral-based adsorbents for PFAS removal because of the highly positive charge of their structural layers. In this research, the performance of two representative LDHs with varied cation compositions, namely Zn-Al and Mg-Al LDHs, were investigated and compared for the removal of perfluorinated carboxylic acids (PFCAs) with an emphasis on perfluorooctanoic acid (PFOA). Zn-Al LDH showed high efficiency for the removal of medium- and long-chain PFCAs (i.e., C ≥ 7), and performed consistently better than Mg-Al LDH. Based on detailed adsorption kinetics and isotherm studies toward PFOA, Zn-Al LDH showed higher adsorption capacity, stronger adsorption affinity, and faster kinetics than Mg-Al LDH. Presence of natural organic matter had minimal impact on PFOA removal by Zn-Al LDH, but sulfate severely inhibited PFOA adsorption. Combined results of aqueous adsorption experiments and sorbent characterization suggested that electrostatic interactions may be the primary mechanism for PFOA adsorption onto LDHs. Our results suggested that cation composition of LDHs can have significant effect on the performance for PFCA removal.
Collapse
Affiliation(s)
- Jingwan Huo
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Qianqian Dong
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Shangping Xu
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
12
|
Soltani R, Pelalak R, Pishnamazi M, Marjani A, Sarkar SM, Albadarin AB, Shirazian S. Novel bimodal micro‐mesoporous Ni50Co50-LDH/UiO-66-NH2 nanocomposite for Tl(I) adsorption. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Yang Y, Zheng Z, Yang M, Chen J, Li C, Zhang C, Zhang X. In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123070. [PMID: 32540708 DOI: 10.1016/j.jhazmat.2020.123070] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 05/08/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widely used compound, is harmful to the environment and human health. In this study, a facile one pot solvothermal method of integrating BiOCl with Zn-Al hydrotalcite to form spherical-shaped BiOCl/Zn-Al hydrotalcite (B-BHZA) sample is reported. The characteristics and main factors affecting photocatalytic PFOA and photocatalytic mechanism of BiOCl/Zn-Al hydrotalcite (B-BHZA) are systematically investigated. It is found that spherical-shaped B-BHZA possesses abundant defects and a larger surface area of 64.4 m2 g-1. The factors affecting photocatalytic removal PFOA (e.g., time, pH, initial concentration and dosage) are investigated by modeling the 3D surface response. The removal rate of PFOA is over 90 % in 6 h under UV light at an optimal pH of 2, an initial concentration of 500 μg/L and a dose of dosage 0.5 g/L. The main mechanism occurs by photo-generated h+ oxidation and synergistic effects from the photocatalysis process. Though investigating the intermediates of PFOA degradation and F-, a possibility was proposed that h+ initiated the rapidly decarboxylation of PFOA. The unstable perfluoroheptyl group is formatted and further conversed to short chain perfluorocarboxylic acid. This study provides a new insight for the preparation of highly efficient photocatalysts to the treatment of halogenated compounds in UV system.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Minhui Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinfeng Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Chuanhui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
14
|
Chen J, Zhang X, Shi X, Bi F, Yang Y, Wang Y. Synergistic effects of octahedral TiO2-MIL-101(Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene. J Colloid Interface Sci 2020; 579:37-49. [DOI: 10.1016/j.jcis.2020.06.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
|
15
|
Yang Y, Zheng Z, Zhang D, Zhou C, Zhang X. Ultrasonic degradation of nitrosodipropylamine (NDPA) and nitrosodibutylamine (NDBA) in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29143-29155. [PMID: 32424764 DOI: 10.1007/s11356-020-09040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Nitrosodipropylamine (NDPA) and nitrosodibutylamine (NDBA), two highly toxics and carcinogenic disinfection by-products, cannot be efficiently removed by conventional water treatment processes, while the ultrasound treatment was developed as a promising alternative. In this work, nitrosodipropylamine (NDPA) and nitrosodibutylamine (NDBA) are degraded by ultrasound treatment. Greater than 99% of NDPA and NDBA mixing solution could be decomposed within 60 min at neutral pH under optimal ultrasound power and frequency settings of 100 W and 600 kHz, respectively. Free radical reactions (OH•) played a significant role and the reaction sites were predominately at the bubble interface. The degradation of both NDPA and NDBA exhibited pseudo-first-order degradation kinetics, and the rate constant kapp was influenced by a number of factors including ultrasonic frequency, power, initial concentration, initial pH, various anions and cations frequently present in drinking water, hydroxyl radical scavengers, and water matrices, especially the promoting effect of various anions and cations and water matrices. The results of this study suggest the potential for ultrasound treatment as a method for removing NAms from water.
Collapse
Affiliation(s)
- Yiqiong Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zenghui Zheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dongfeng Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Zhou
- Shanghai Municipal Planning & Design Institute Co., Ltd., Shanghai, 200031, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
16
|
Optimization, Characterization and In Vivo Hepatoprotective Effects of Gold Nanoparticles Biosynthesized by Eryngium bungei Boiss. Hydro-Alcoholic Extract. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01569-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Synthesis of Highly Efficient CuCeZr Catalyst Derived from UiO-66 Precursor for CO Oxidation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03164-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Li N, He Y, Lian J, Liu Q, Zhang X, Zhang X. Facile fabrication of a NiO/Ag3PO4 Z-scheme photocatalyst with enhanced visible-light-driven photocatalytic activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj01060j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The photocatalytic performance of Z-scheme NiO/Ag/Ag3PO4 was evaluated by degrading organic pollutants under visible light.
Collapse
Affiliation(s)
- Ning Li
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Yanlei He
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Jiajia Lian
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering
- State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Xiao Zhang
- Shandong Key Laboratory of Biochemical Analysis
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|