1
|
Yang T, Zhang X, Zhang H, Jiang X, Yuan X, Chen W, Li J, Zeng C. Argonaute 1 negatively regulates cadmium tolerance via modulating jasmonic acid and gibberellin contents, antioxidant enzymes, and chlorophyll level in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136618. [PMID: 39603128 DOI: 10.1016/j.jhazmat.2024.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants that limits plant productivity and poses a threat to human health. In this study, we identified argonaute 1 (AGO1), a key factor in the RNA interference pathway, which is suppressed by Cd stress in Nicotiana tabacum L. Overexpression of NtAGO1 (AGO1-OE), knockout of NtAGO1 (ago1-KO), and wild-type (WT) plants were employed to investigate the mechanism of NtAGO1-mediated Cd tolerance in tobacco. The results showed that AGO1-OE plants exhibited higher levels of reactive oxygen species (ROS) and lower chlorophyll content, and their seedlings accumulated lower Cd levels than WT plants. Cd stress affected the content of endogenous plant hormones differently, with jasmonic acid (JA) increasing by 57.42 % and gibberellins (GA) decreasing by 24.51 %, both of which were negatively regulated by NtAGO1. Application of exogenous GA3 and methyl jasmonate confirmed that plant hormones up-regulate antioxidant enzyme activity. Furthermore, the foliar application of GA3 inhibited the expression of chlorophyll degradation-related genes, impeded Cd-induced chlorophyll degradation and promoted plant growth. Our results demonstrate that NtAGO1 negatively regulates the response of tobacco to Cd stress by decreasing JA and GA levels, providing a foundation for the use of genetic engineering methods to enhance the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Ting Yang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China.
| | - Xinyu Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Hui Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Xingpeng Jiang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Xu Yuan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Weida Chen
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Jianan Li
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
2
|
Yang T, Zhang H, Jiang XP, Zhang XY, Yuan X, Lou S, Zeng CL. Phytochrome alleviates cadmium toxicity by regulating gibberellic acid and brassinolide in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109375. [PMID: 39637708 DOI: 10.1016/j.plaphy.2024.109375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Soil cadmium (Cd) pollution has emerged as a substantial environmental challenge globally, hampering crop production and endangering human health. Here, we found that photoreceptor phytochromes (PHYs) were involved in regulating Cd tolerance in tobacco. Compared to wildtype (WT) plants, phytochrome-defective mutants (phyA, phyB, phyAB) displayed Cd sensitive phenotype, and had a higher reactive oxygen species (ROS) accumulation and malondialdehyde content. However, differences in Cd concentration among phyA mutants, phyB mutants, phyAB mutants, and WT plants were not observed. Consequently, the higher tolerance promoted the biomass of WT plants, thereby increasing the Cd accumulation. Furthermore, Cd stress altered the levels of gibberellin (GA) and brassinosteroid (BR), and these phytohormones were higher in WT plants. GA3 application induced the transcription of genes encoding antioxidant enzyme and suppressed the expression of genes associated with chlorophyll degradation, inhibiting chlorophyll breakdown and decreasing ROS levels in plants under Cd stress conditions. Additionally, epibrassinolide spraying promoted the expression of genes related to chlorophyll synthesis, thereby increasing chlorophyll content and maintaining plant acquisition ability. Our results suggested that phytochromes enhanced the tolerance of Nicotiana tabacum to Cd stress through regulating BR and GA.
Collapse
Affiliation(s)
- Ting Yang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Hui Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Xin Peng Jiang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Xin Yu Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Xu Yuan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Shuang Lou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Chang Li Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
3
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y, Li Z. Effects of 24-Epibrassinolide, melatonin and their combined effect on cadmium tolerance in Primula forbesii Franch. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115217. [PMID: 37406607 DOI: 10.1016/j.ecoenv.2023.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
This study aimed to investigate the interaction between 24-Epibrassinolide (EBR) and melatonin (MT) and their effects on cadmium (Cd)-stressed Primula forbesii Franch. P. forbesii seedlings were hydroponically acclimatized at 6-7 weeks, then treated with Cd (200 μmol L-1), 24-EBR (0.1 μmol L-1), and MT (100 μmol L-1) after two weeks. Cd stress significantly reduced crown width, shoot, root length, shoot fresh weight, and fresh and dry root weights. Herein, 24-EBR, MT, and 24-EBR+MT treatments attenuated the growth inhibition caused by Cd stress and improved the morphology, growth indexes, and ornamental characteristics of P. forbesii under Cd stress. 24-EBR had the best effect by effectively alleviating Cd stress and promoting plant growth and development. 24-EBR significantly increased all growth parameters compared to Cd treatment. In addition, 24-EBR significantly improved the gas exchange parameters, activities of antioxidant enzymes, and the cycle efficiency of AsA-GSH. Furthermore, 24-EBR increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) by 127.29%, 61.31%, 61.22%, and 51.04%, respectively, compared with the Cd treatment. Therefore, 24-EBR removed the reactive oxygen species produced by stress, thus protecting plants against stress damage. These results indicate that 24-EBR can effectively enhance the tolerance of P. forbesii to Cd stress.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhuolin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Zhang S, Bao Q, Huang Y, Han N. Exogenous plant hormones alleviate As stress by regulating antioxidant defense system in Oryza sativa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6454-6465. [PMID: 35997876 DOI: 10.1007/s11356-022-22627-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Plant hormones play essential roles in plant growth regulation and resistance to environmental pressure. A hydroponic experiment was conducted using Zhongjiazao 17 rice to explore the effects of exogenous plant hormones on antioxidant response and As accumulation in rice under As stress. Melatonin (MT), 2,4-epibrassinolide (EBL), and jasmonic acid (JA) reduced the As content in seedlings significantly by 13.4% (MT)-32.5% (EBL) under 5 µM As stress. Three hormones increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and glutathione (GSH) content significantly (2.2%-82.9%) in 5 µM As stress condition, whereas the levels of H2O2 and malondialdehyde (MDA) were reduced significantly (32.3%-78.1%). Plant hormone addition reduced the As content in seedlings significantly by 18.2% (JA)-33.3% (MT) under 25 µM As stress. SOD, POD, and CAT activities and GSH content in seedlings increased significantly (5.6-90.4%) with three hormones addition in 25 µM As stress, whereas the levels of H2O2, O2˙¯, and MDA reduced significantly (20.9-73.0%). Staining with 2',7'-dichlorodihydrofluorescein diacetate and nitroblue tetrazolium showed that green fluorescence and blue spots decreased gradually in hormone-treated seedlings, further confirming that the exogenous addition of hormones weakened the oxidative stress of As to seedlings. Oxidative damage by As stress was reduced more by EBL than by the other hormones MT or JA. Totally, exogenous plant hormone can alleviate As stress in rice by activating enzyme activity of antioxidant defense system and scavenging reactive oxygen species, thus reducing oxidative damage and As accumulation in rice seedlings.
Collapse
Affiliation(s)
- Shengnan Zhang
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjing, 300191, China
| | - Qiongli Bao
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjing, 300191, China
| | - Yizong Huang
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjing, 300191, China.
| | - Nian Han
- Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjing, 300191, China
| |
Collapse
|
5
|
Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P. Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129640. [PMID: 35882170 DOI: 10.1016/j.jhazmat.2022.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
6
|
Basit F, Bhat JA, Hu J, Kaushik P, Ahmad A, Guan Y, Ahmad P. Brassinosteroid Supplementation Alleviates Chromium Toxicity in Soybean (Glycine max L.) via Reducing Its Translocation. PLANTS 2022; 11:plants11172292. [PMID: 36079674 PMCID: PMC9460071 DOI: 10.3390/plants11172292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, the morpho-physiological, biochemical, and molecular responses of soybean cultivars with/without foliar application of BRs under Cr toxicity were intensely investigated. Our outcomes deliberated that BRs application noticeably reduced Cr-induced phytotoxicity by lowering Cr uptake (37.7/43.63%), accumulation (63.92/81.73%), and translocation (26.23/38.14%) in XD-18/HD-19, plant tissues, respectively; besides, improved seed germination ratio, photosynthetic attributes, plant growth, and biomass, as well as prevented nutrient uptake inhibition under Cr stress, especially in HD-19 cultivar. Furthermore, BRs stimulated antioxidative defense systems, both enzymatic and non-enzymatic, the compartmentalization of ion chelation, diminished extra production of reactive oxygen species (ROS), and electrolyte leakage in response to Cr-induced toxicity, specifically in HD-19. In addition, BRs improved Cr stress tolerance in soybean seedlings by regulating the expression of stress-related genes involved in Cr accumulation, and translocation. Inclusively, by considering the above-mentioned biomarkers, foliar spray of BRs might be considered an effective inhibitor of Cr-induced damages in soybean cultivars, even in Cr polluted soil.
Collapse
Affiliation(s)
- Farwa Basit
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Jin Hu
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yajing Guan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.G.); (P.A.)
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Srinagar 192301, Jammu and Kashmir, India
- Correspondence: (Y.G.); (P.A.)
| |
Collapse
|
7
|
Zeng G, Gao F, Li C, Li D, Xi Z. Characterization of 24-epibrassinolide-mediated modulation of the drought stress responses: Morphophysiology, antioxidant metabolism and hormones in grapevine (Vitis vinifera L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:98-111. [PMID: 35636336 DOI: 10.1016/j.plaphy.2022.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Drought stress is one of the major abiotic stresses that limit grape growth and yield. Brassinosteroids (BRs) are a class of phytohormones essential for plant growth, development, and adaptation to environmental stress. This study aimed to reveal the physiological and biochemical mechanisms of exogenous BRs in alleviating the drought stress in grapevines. Two-year-old grape seedlings (Vitis vinifera L.) were sprayed with 24-epibrassinolide (EBR), a synthetic analog of BRs, and then subjected to drought treatment. The results showed that exogenous EBR significantly mitigated the reduction of photosynthetic pigment contents and photosystem II efficiency and decreased the damage to chloroplasts when grape seedlings were subjected to drought stress. Drought stress resulted in the accumulation of reactive oxidative species (ROS) and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the elevated antioxidant system. Exogenous EBR improved the activities of superoxide dismutase (14%), catalase (18%), peroxidase (17%), and ascorbate peroxidase (9%), and promoted the accumulation of ascorbic acid (10%) and glutathione (7%) under drought stress. EBR pretreatment also promoted autophagic activity, which contributed to the degradation of damaged chloroplasts. Moreover, EBR pretreatment increased the concentrations of abscisic acid, jasmonic acid, auxin, and gibberellic acid. Taken together, exogenous EBR could ameliorate the deleterious effects of drought stress by up-regulating photosynthetic capacity, antioxidant system, autophagic activity, and hormone concentrations.
Collapse
Affiliation(s)
- Guihua Zeng
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feifei Gao
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chan Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dandan Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Tian F, Han C, Chen X, Wu X, Mi J, Wan X, Liu Q, He F, Chen L, Yang H, Zhong Y, Qian Z, Zhang F. PscCYP716A1-Mediated Brassinolide Biosynthesis Increases Cadmium Tolerance and Enrichment in Poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:919682. [PMID: 35865284 PMCID: PMC9294640 DOI: 10.3389/fpls.2022.919682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd), as one of the heavy metals with biological poisonousness, seriously suppresses plant growth and does harm to human health. Hence, phytoremediation was proposed to mitigate the negative effects from Cd and restore contaminated soil. However, the internal mechanisms of detoxification of Cd used in phytoremediation are not completely revealed. In this study, we cloned the cytochrome P450 gene PscCYP716A1 from hybrid poplar "Chuanxiang No. 1" and found that the PscCYP716A1 was transcriptionally upregulated by Cd stress and downregulated by the exogenous brassinolide (BR). Meanwhile, PscCYP716A1 significantly promoted the poplar growth and enhanced the Cd accumulation in poplar. Compared to wild-type poplars, overexpressed PscCYP716A1 lines produced higher levels of endogenous BR and showed a stronger tolerance to Cd, which revealed that PscCYP716A1 may reduce the oxidative stress damage induced by Cd stress through accelerating BR synthesis. In general, PscCYP716A1 has a potential superiority in regulating the plant's tolerance to Cd stress, which will provide a scientific basis and a new type of gene-modified poplar for Cd-pollution remediation.
Collapse
Affiliation(s)
- Feifei Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Chengyu Han
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxi Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaolu Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiaxuan Mi
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Lianghua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hanbo Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zongliang Qian
- Forestry and Grassland Bureau of Ganzi Prefecture, Kangding, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Lan X, Li J, Chen J, Liu J, Cao F, Liao C, Zhang Z, Gu M, Wei Y, Shen F, Wei X, Luo X, Zhang X. Effects of foliar applications of Brassinolide and Selenium on the accumulation of Arsenic and Cadmium in rice grains and an assessment of their health risk. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:161-171. [PMID: 35575119 DOI: 10.1080/15226514.2022.2066064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic and cadmium pose a potential health risk to human beings via rice grain consumption. In the current study, a pot experiment was conducted to evaluate the effect of Br (5 mM and 20 mM) and Se (1 mM) at rice tillering and filling stages on Cd and As accumulation in rice grain and their health risk indices. The results showed that Br or Se applications at different stages of rice improved the photosynthesis, reduce MDA content in flag leaves by 17.41%-38.65%, increased rice biomass and grain yield by 10.50%-29.94% and 10.50%-36.56%, and enhanced grain N and P uptake by 3.25%-34.90%, and 22.98%-72.05%, respectively. Applications of Br and Se effectively decreased Cd and As concentration in rice grain by 31.74%-86.97% and 16.42%-81.13% respectively. Compared to the individual treatment, combined 20 mM Br and 1 mM Se at the filling stage showed the lowest accumulation of As (0.149 mg·kg-1) and Cd (0.105 mg·kg-1) in grain, and its health risk index was below the acceptable limits (HRI < 1). This implies that application of Br and Se at the filling stage is a promising strategy for the safe production of rice in As and Cd co-contaminated regions.
Collapse
Affiliation(s)
- Xiuquan Lan
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jiayuan Li
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Jiancheng Chen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Jing Liu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Feishu Cao
- Guangxi Bocco Environmental Protection Technology Co., Ltd, Nanning, China
| | - Changjun Liao
- Guangxi Bocco Environmental Protection Technology Co., Ltd, Nanning, China
| | - Zengyu Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Minghua Gu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Fangke Shen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xianghua Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xianbao Luo
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xiuling Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Teng Y, Guan W, Yu A, Li Z, Wang Z, Yu H, Zou L. Exogenous melatonin improves cadmium tolerance in Solanum nigrum L. without affecting its remediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1284-1291. [PMID: 35016578 DOI: 10.1080/15226514.2021.2025204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still influenced by toxic levels of cadmium (Cd). Thus, the development of eco-friendly strategies to enhance its tolerance, maintaining remediation potential is of special interest. The present work aimed to evaluate the effects of exogenous application of melatonin (MT) in the physiological and biochemical responses of S. nigrum and remediation potential exposed to Cd. After 30 days of exposure, the results revealed that Cd-mediated inhibitory effects on biomass and photosynthetic pigment synthesis were efficiently mitigated upon application of melatonin, without affecting Cd accumulation. Higher levels of Cd were found in roots, regardless of the pretreatment with the melatonin. Foliar application of melatonin, however, induced distinctive effects, lowering malondialdehyde (MDA), relative electrical conductivity (REL), and proline levels in shoots. These changes contributed to improvements in the water status, photosynthetic pigment synthesis, and biomass production of S. nigrum under Cd stresses. Overall, our results indicate a protective effect of melatonin on S. nigrum response to excess Cd, contributing to a better tolerance and growth rate, without disturbing its phytoremediation potential.Novelty statementAlthough Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still influenced by toxic levels of cadmium. This study evaluated the potential of melatonin to boost S. nigrum defence against Cd toward a better growth rate and remediation potential.
Collapse
Affiliation(s)
- Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Wenjie Guan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhishuai Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhenjun Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Sharma P, Ahmad M, Rathee S, Singh HP, Batish DR, Kohli RK. Bridging the gap: linking morpho-functional traits' plasticity with hyperaccumulation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:762. [PMID: 34727237 DOI: 10.1007/s10661-021-09504-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Plant species exhibiting heavy metal tolerance are instrumental in phytoremediation of metalliferous sites. Most of the time, variations in plant functional traits (PFTs) are overlooked while identifying hyperaccumulators. However, investigating morphological, physiological, and phenological variations can contribute to our knowledge about stress tolerance, and aid in identifying potential hyperaccumulators. In the present study, we investigated variation in morpho-functional traits in Solanum nigrum, a known hyperaccumulator, under lead (Pb) stress. Twenty-one PFTs including 9 above-ground (leaf count, leaf area, specific leaf area, leaf dry matter content, leaf thickness, leaf dry mass, shoot length, stem dry mass, stem diameter), 3 below-ground (root length, root dry mass, and root diameter), 4 reproductive (flower bud count, fruit count, flower count, and fruit dry mass), and 5 photosynthetic traits (total chlorophyll, total carotenoid, chlorophyll a, chlorophyll b, and photosynthetic efficiency) under varying Pb concentrations (500-2000 mg kg-1) were assessed. Pillai's trace test (MANOVA) depicted significant variations in above-ground, below-ground, and photosynthetic traits, whereas reproductive traits did not vary significantly with progressive metal concentration. However, most of the studied traits except flower count, fruit dry mass, and chlorophyll b varied significantly under Pb stress. The study depicts that enhanced PFT's plasticity enables S. nigrum to grow in Pb-contaminated soil effectively without impacting plant fitness. Plasticity of morpho-functional traits, therefore, establishes itself as a resourceful approach in successful identification of phytoremediation capacity of a plant.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, India.
| | | |
Collapse
|
12
|
Song YJ, Li Y, Leng Y, Li SW. 24-epibrassinolide improves differential cadmium tolerance of mung bean roots, stems, and leaves via amending antioxidative systems similar to that of abscisic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52032-52045. [PMID: 33999324 DOI: 10.1007/s11356-021-14404-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution has attracted global concern. In the present study, the biochemical mechanisms underlying the amelioration of 24-epibrassinolide (eBL) and abscisic acid (ABA) on Cd tolerance of roots, stems, and leaves in mung bean seedlings were comparatively analyzed. Foliar application of eBL markedly ameliorated the growth of mung bean seedling exposed to 100 μM Cd. eBL alone had no significant effects on the activities of antioxidative enzymes and the contents of glutathione (GSH) and polyphenols in the three organs whereas significantly increased the root, stem, and leaf proline contents on average by 54.9%, 39.9%, and 94.4%, respectively, and leaf malondialdehyde (MDA) content on average by 69.0% compared with the controls. When the plants were exposed to Cd, eBL significantly reversed the Cd-increased root ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities, root polyphenol, proline, and GSH levels, leaf chlorophyll contents, and MDA levels in the three organs. eBL significantly restored the Cd-decreased leaf catalase (CAT) activity and leaf polyphenol levels. These results indicated that eBL played roles in maintaining cellular redox homeostasis and evidently alleviated Cd-caused membrane lipid peroxidation via controlling the activity of antioxidative systems. eBL mediated the differential responses of cellular biochemical processes in the three organs to Cd exposure. Furthermore, a comparative analysis revealed that, under Cd stress, the effects of eBL on the biochemical processes were very similar to those of ABA, suggesting that ABA and eBL improve plant Cd tolerance via some common downstream pathways.
Collapse
Affiliation(s)
- Ya-Juan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yi Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Yan Leng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China
| | - Shi-Weng Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China.
| |
Collapse
|