1
|
Ng'etich AI, Amoah ID, Bux F, Kumari S. Anthelmintic resistance in soil-transmitted helminths: One-Health considerations. Parasitol Res 2023; 123:62. [PMID: 38114766 PMCID: PMC10730643 DOI: 10.1007/s00436-023-08088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The One-Health approach recognizes the intricate connection between human, animal, and environmental health, and that cooperative effort from various professionals provides comprehensive awareness and potential solutions for issues relating to the health of people, animals, and the environment. This approach has increasingly gained appeal as the standard strategy for tackling emerging infectious diseases, most of which are zoonoses. Treatment with anthelmintics (AHs) without a doubt minimizes the severe consequences of soil-transmitted helminths (STHs); however, evidence of anthelmintic resistance (AR) development to different helminths of practically every animal species and the distinct groups of AHs is overwhelming globally. In this regard, the correlation between the application of anthelmintic drugs in both human and animal populations and the consequent development of anthelmintic resistance in STHs within the context of a One-Health framework is explored. This review provides an overview of the major human and animal STHs, treatment of the STHs, AR development and drug-related factors contributing towards AR, One-Health and STHs, and an outline of some One-Health strategies that may be used in combating AR.
Collapse
Affiliation(s)
- Annette Imali Ng'etich
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology (DUT), Durban, South Africa.
| |
Collapse
|
2
|
Lagos S, Koutroutsiou K, Karpouzas DG. Isolation of soil bacteria able to degrade the anthelminthic compound albendazole. PeerJ 2023; 11:e16127. [PMID: 37953781 PMCID: PMC10634332 DOI: 10.7717/peerj.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/27/2023] [Indexed: 11/14/2023] Open
Abstract
Anthelmintic (AHs) veterinary drugs constitute major environmental contaminants. The use of AH-contaminated fecal material as manures in agricultural settings constitutes their main route of environmental dispersal. Once in soils, these compounds induce toxic effects to soil fauna and soil microbiota, both having a pivotal role in soil ecosystem functioning. Therefore, it is necessary to identify mitigation strategies to restrict the environmental dispersal of AHs. Bioaugmentation of AH-contaminated manures or soils with specialized microbial inocula constitutes a promising remediation strategy. In the present study, we aimed to isolate microorganisms able to actively transform the most widely used benzimidazole anthelminthic albendazole (ABZ). Enrichment cultures in minimal growth media inoculated with a soil known to exhibit rapid degradation of ABZ led to the isolation of two bacterial cultures able to actively degrade ABZ. Two oxidative products of ABZ, ABZSO and ABZSO2, were detected at low amounts along its degradation. This suggested that the oxidation of ABZ is not a major transformation process in the isolated bacteria which most probably use other biotic pathways to degrade ABZ leading to the formation of products not monitored in this study. Full length sequencing of their 16S rRNA gene and phylogenetic analysis assigned both strains to the genus Acinetobacter. The sequences were submitted in GeneBank NCBI, database with the accession numbers OP604271 to OP604273. Further studies will employ omic tools to identify the full transformation pathway and the associated genetic network of Acinetobacter isolates, information that will unlock the potential use of these isolates in the bioaugmentation of contaminated manures.
Collapse
Affiliation(s)
- Stathis Lagos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Viopolis, Thessaly, Greece
| | - Kalliopi Koutroutsiou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Viopolis, Thessaly, Greece
| | - Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Viopolis, Thessaly, Greece
| |
Collapse
|
3
|
Lagos S, Tsetsekos G, Mastrogianopoulos S, Tyligada M, Diamanti L, Vasileiadis S, Sotiraki S, Karpouzas DG. Interactions of anthelmintic veterinary drugs with the soil microbiota: Toxicity or enhanced biodegradation? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122135. [PMID: 37406753 DOI: 10.1016/j.envpol.2023.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Anthelmintic (AH) compounds are used to control gastrointestinal nematodes (GINs) in livestock production. They are only partially metabolized in animals ending in animal excreta whose use as manures leads to AH dispersal in agricultural soils. Once in soil, AHs interact with soil microorganisms, with the outcome being either detrimental, or beneficial. We aimed to disentangle the mechanisms of these complex interactions. Two soils previously identified as « fast » or « slow», regarding the degradation of albendazole (ABZ), ivermectin (IVM), and eprinomectin (EPM), were subjected to repeated applications at two dose rates (1, 2 mg kg-1and 10, 20 mg kg-1). We hypothesized that this application scheme will lead to enhanced biodegradation in «fast » soils and accumulation and toxicity in «slow » soils. Repeated application of ABZ resulted in different transformation pathways in the two soils and a clear acceleration of its degradation in the «fast » soil only. In contrast residues of IVM and EPM accumulated in both soils. ABZ was the sole AH that induced a consistent reduction in the abundance of total fungi and crenarchaea. In addition, inhibition of nitrification and reduction in the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) by all AHs was observed, while commamox bacteria were less responsive. Amplicon sequencing analysis showed dose-depended shifts in the diversity of bacteria, fungi, and protists in response to AHs application. ABZ presented the most consistent effect on the abundance and diversity of most microbial groups. Our findings provide first evidence for the unexpected toxicity of AHs on key soil microbial groups that might have to be considered in a regulatory context.
Collapse
Affiliation(s)
- Stathis Lagos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Georgios Tsetsekos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Spyridon Mastrogianopoulos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Maria Tyligada
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Lamprini Diamanti
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Smaragda Sotiraki
- Laboratory of Parasitology, Hellenic Agricultural Organization-Demeter, Veterinary Research Institute, 57001, Thermi, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
4
|
Gkimprixi E, Lagos S, Nikolaou CN, Karpouzas DG, Tsikou D. Veterinary drug albendazole inhibits root colonization and symbiotic function of the arbuscular mycorrhizal fungus Rhizophagus irregularis. FEMS Microbiol Ecol 2023; 99:fiad048. [PMID: 37156498 PMCID: PMC10696295 DOI: 10.1093/femsec/fiad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/23/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are plant symbionts that have a pivotal role in maintaining soil fertility and nutrient cycling. However, these microsymbionts may be exposed to organic pollutants like pesticides or veterinary drugs known to occur in agricultural soils. Anthelminthics are veterinary drugs that reach soils through the application of contaminated manures in agricultural settings. Their presence might threaten the function of AMF, considered as sensitive indicators of the toxicity of agrochemicals to the soil microbiota. We determined the impact of the anthelminthic compounds albendazole and ivermectin on the establishment and functionality of the symbiosis between the model-legume Lotus japonicus and the AMF Rhizophagus irregularis. Our analyses revealed negative effects of albendazole on the development and functionality of arbuscules, the symbiotic organelle of AMF, at a concentration of 0.75 μg g-1. The impairment of the symbiotic function was verified by the reduced expression of genes SbtM1, PT4 and AMT2;2 involved in arbuscules formation, P and N uptake, and the lower phosphorus shoot content detected in the albendazole-treated plants. Our results provide first evidence for the toxicity of albendazole on the colonization capacity and function of R. irregularis at concentrations that may occur in agricultural soils systematically amended with drug-containing manures.
Collapse
Affiliation(s)
- Eleni Gkimprixi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Stathis Lagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Christina N Nikolaou
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
5
|
Navrátilová M, Vokřál I, Krátký J, Matoušková P, Sochová A, Vrábľová D, Szotáková B, Skálová L. Albendazole from ovine excrements in soil and plants under real agricultural conditions: Distribution, persistence, and effects. CHEMOSPHERE 2023; 324:138343. [PMID: 36898439 DOI: 10.1016/j.chemosphere.2023.138343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Albendazole (ABZ), a broad-spectrum anthelmintic drug frequently used in livestock against parasitic worms (helminths), enters the environment mainly via faeces of treated animals left in the pastures or used as dung for field fertilization. To obtain information about the subsequent fate of ABZ, the distribution of ABZ and its metabolites in the soil around faeces along with uptake and effects in plants were monitored under real agricultural conditions. Sheep were treated with a recommended dose of ABZ; faeces were collected and used to fertilize fields with fodder plants. Soil samples (in two depths) and samples of two plants, clover (Trifolium pratense) and alfalfa (Medicago sativa), were collected at distances 0-75 cm from the faeces for 3 months after fertilization. The environmental samples were extracted using QuEChERS and LLE sample preparation procedures. The targeted analysis of ABZ and its metabolites was conducted by using the validated UHPLC-MS method. Two main ABZ metabolites, ABZ-sulfoxide (anthelmintically active) and ABZ-sulfone (inactive), persisted in soil (up to 25 cm from faeces) and in plants for three months when the experiment ended. In plants, ABZ metabolites were detected even 60 cm from the faeces and abiotic stress was observed in the central plants. The considerable distribution and persistence of ABZ metabolites in soil and plants amplify the negative environmental impact of ABZ documented in other studies.
Collapse
Affiliation(s)
- Martina Navrátilová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Ivan Vokřál
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Josef Krátký
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Andrea Sochová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Daniela Vrábľová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Muniz MS, Maia MES, Araruna ICA, Martins RX, Rocha TL, Farias D. A review on the ecotoxicity of macrocyclic lactones and benzimidazoles on aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54257-54279. [PMID: 36929260 DOI: 10.1007/s11356-023-26354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Despite its wide production and several applications, veterinary antiparasitics from macrocyclic lactones and benzimidazole classes have not received much scientific attention concerning their environmental risks. Thus, we aimed to provide insights into the state of the environmental research on macrocyclic lactone and benzimidazole parasiticides, emphasizing their toxicity to non-target aquatic organisms. We searched for relevant information on these pharmaceutical classes on PubMed and Web of Science. Our search yielded a total of 45 research articles. Most articles corresponded to toxicity testing (n = 29), followed by environmental fate (n = 14) and other issues (n = 2) of selected parasiticides. Macrocyclic lactones were the most studied chemical group (65% of studies). Studies were conducted mainly with invertebrate taxa (70%), with crustaceans being the most predominant group (n = 27; 51%). Daphnia magna was the most used species (n = 8; 15%). Besides, it also proved to be the most sensitive organism, yielding the lowest toxicity measure (EC50 0.25 μg/L for decreased mobility after 48 h-abamectin exposure) reported. Moreover, most studies were performed in laboratory settings, tracking a limited number of endpoints (acute mortality, immobility, and community disturbance). We posit that macrocyclic lactones and benzimidazoles warrant coordinated action to understand their environmental risks.
Collapse
Affiliation(s)
- Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, 58050-085, Brazil
| | - Maria Eduarda Souza Maia
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, 58050-085, Brazil
| | - Igor Cauê Alves Araruna
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, 58050-085, Brazil
| | - Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, 58050-085, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, 58050-085, Brazil.
| |
Collapse
|
7
|
Takhti S, Pordel M, Davoodnia A, Bozorgmehr MR. Imidazo[4′,5′:3,4]Benzo[1,2- e][1,4]Diazepins as New Heterocyclic Systems: Synthesis, Characterization and Their in Vitro Interactions with Benzodiazepine Receptors. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2127800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Samaneh Takhti
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehdi Pordel
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | |
Collapse
|
8
|
Lagos S, Moutzoureli C, Spiropoulou I, Alexandropoulou A, Karas PA, Saratsis A, Sotiraki S, Karpouzas DG. Biodegradation of anthelmintics in soils: does prior exposure of soils to anthelmintics accelerate their dissipation? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62404-62422. [PMID: 35397025 DOI: 10.1007/s11356-022-19964-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Anthelmintics (AHs) control animal infections with gastrointestinal nematodes. They reach soil through animal faeces deposited on soils or through manuring. Although soil constitutes a major AH sink, we know little about the mechanisms controlling their soil dissipation. We employed studies with fumigated and non-fumigated soils collected from 12 sheep farms with a variable record of albendazole (ABZ), ivermectin (IVM) and eprinomectin (EPM) use. From each farm, we collected soils from inside small ruminant barn facilities (series A, high exposure) and the associated grazing pastures (series B, low exposure). We asked the following questions: (a) What is the role of soil microorganisms in AH dissipation? (b) Does repeated exposure of soils to AHs lead to their accelerated biodegradation? (c) Which soil physicochemical properties control AH dissipation? Soil fumigation significantly retarded ABZ (DT50 1.9 and 4.33 days), IVM (34.5 and 108.7 days) and EPM dissipation (30 and 121 days) suggesting a key role of soil microorganisms in AH dissipation. No significant acceleration in AH dissipation was evident in soils from units with a record of the administration of AHs or in soil series A vs series B, suggesting that the level of prior exposure was not adequate to induce their enhanced biodegradation. Significant positive and negative correlations of soil total organic carbon (TOC) and ABZ and IVM dissipation, respectively, were observed. Soil adsorption of AHs increased in the order IVM > ABZ > EPM. TOC controlled soil adsorption of IVM and EPM, but not of ABZ, in support of the contrasting effect of TOC on IVM and ABZ dissipation.
Collapse
Affiliation(s)
- Stahis Lagos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Chrysovalantou Moutzoureli
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Ifigenia Spiropoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Aggeliki Alexandropoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Panagiotis A Karas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Anastasios Saratsis
- Laboratory of Parasitology, Hellenic Agricultural Organisation-Demeter, Veterinary Research Institute, 57001, Thermi, Greece
| | - Smaragda Sotiraki
- Laboratory of Parasitology, Hellenic Agricultural Organisation-Demeter, Veterinary Research Institute, 57001, Thermi, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
9
|
Raducka A, Świątkowski M, Korona-Głowniak I, Kaproń B, Plech T, Szczesio M, Gobis K, Szynkowska-Jóźwik MI, Czylkowska A. Zinc Coordination Compounds with Benzimidazole Derivatives: Synthesis, Structure, Antimicrobial Activity and Potential Anticancer Application. Int J Mol Sci 2022; 23:ijms23126595. [PMID: 35743039 PMCID: PMC9224258 DOI: 10.3390/ijms23126595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Developing new, smart drugs with the anticancer activity is crucial, especially for cancers, which cause the highest mortality in humans. In this paper we describe a series of coordination compounds with the element of health, zinc, and bioactive ligands, benzimidazole derivatives. By way of synthesis we have obtained four compounds named C1, C2, C4 and C4. Analytical analyses (elemental analysis (EA), flame atomic absorption spectrometry (FAAS)), spectroscopic (Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS)) and thermogravimetric (TG) methods and the definition of crystal structures were used to explore the nature of bonding and to elucidate the chemical structures. The collected analytical data allowed the determination of the stoichiometry in coordination compounds, thermal stability, crystal structure and way of bonding. The cytotoxicity effect of the new compounds as a potential antitumor agent on the glioblastoma (T98G), neuroblastoma (SK-N-AS) and lung adenocarcinoma (A549) cell lines and human normal skin fibroblasts (CCD-1059Sk) was also determined. Cell viability was determined by the MTT assay. The results obtained confirmed that conversion of ligands into the respective metal complexes significantly improved their anticancer properties. The complexes were screened for antibacterial and antifungal activities. The ADME technique was used to determine the physicochemical and biological properties.
Collapse
Affiliation(s)
- Anita Raducka
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
- Correspondence: (A.R.); (A.C.)
| | - Marcin Świątkowski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwilłłowska 11, 20-080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gen. Hallera 107, 80-416 Gdańsk, Poland;
| | - Małgorzata Iwona Szynkowska-Jóźwik
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
| | - Agnieszka Czylkowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland; (M.Ś.); (M.S.); (M.I.S.-J.)
- Correspondence: (A.R.); (A.C.)
| |
Collapse
|
10
|
Katsoyiannis IA, Lammel G, Samara C, Ernst M, Wenk J, Torretta V, Voutsa D, Vollertsen J, Bucheli TD, Godbersen L, Lambropoulou D, Heath E, Kallenborn R, Giannakoudakis D, Deliyanni E, Bandosz TJ, Ražić S, Samanidou V, Papa E, Lacorte S, Katsoyiannis A. Innovative aspects of environmental chemistry and technology regarding air, water, and soil pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58958-58968. [PMID: 34499300 DOI: 10.1007/s11356-021-15370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Ioannis A Katsoyiannis
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Gerhard Lammel
- Max Planck Institute for Chemistry, Mainz, Germany
- RECETOX, Masaryk University, Brno, Czech Republic
| | - Constantini Samara
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Mathias Ernst
- TUHH, Institute for Water Resources and Water Supply (B-11), Am Schwarzenberg-Campus 3, Hamburg University of Technology, D-27071, Hamburg, Germany
| | - Jannis Wenk
- Department of Chemical Engineering and Water Innovation and Research Centre (WIRC@Bath), Claverton Down, Bath, Somerset, University of Bath, BA2, 7AY, United Kingdom
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, via GB Vico 46, Insubria University, I-21100, Varese, Italy
| | | | - Jes Vollertsen
- Department of The Built Environment, Thomas Manns Vej 23, Aalborg University, DK-9220, Aalborg Øst, Denmark
| | - Thomas D Bucheli
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Levke Godbersen
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Dimitra Lambropoulou
- Max Planck Institute for Chemistry, Mainz, Germany
- Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, GR 57001, Thessaloniki, Greece
| | - Ester Heath
- Jožef Stefan Institute and International Postgraduate School Jožef Stefan, Jamova 39, 1000, Ljubljana, Slovenia
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (IKBM), Norwegian University of Life Sciences (NMBU), NO- 1432, ÅS, Norway
| | - Dimitrios Giannakoudakis
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Eleni Deliyanni
- Department of Chemistry, Laboratory of Chemical and Environmental Technology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of the City University of New York, NY 10031, New York , USA
| | - Slavica Ražić
- University of Belgrade - Faculty of Pharmacy, Department of Analytical Chemistry, Belgrade, Serbia
| | - Viktoria Samanidou
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece
| | - Ester Papa
- Department of Theoretical and Applied Sciences, via GB Vico 46, Insubria University, I-21100, Varese, Italy
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC. Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| | | |
Collapse
|
11
|
Belew S, Suleman S, Wynendaele E, Duchateau L, De Spiegeleer B. Environmental risk assessment of the anthelmintic albendazole in Eastern Africa, based on a systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116106. [PMID: 33272795 DOI: 10.1016/j.envpol.2020.116106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
This study performs an environmental risk assessment (ERA) of the anthelmintic medicine albendazole (ABZ) in the eastern African region. A systematic literature search strategy was applied to obtain quantitative information on the physicochemical characteristics, the metabolization-fate, the ecotoxicity and the environmental occurrence in different countries worldwide serving as model regions. In addition, insilico tools were employed to obtain data on physicochemical characteristics and toxic hazards of ABZ and its metabolites. Moreover, ERA models were used to predict environmental concentrations in different compartments and compare them with the measured environmental concentrations. Finally, the environmental risk of ABZ in the eastern Africa was estimated by calculating the risk quotient (RQ), and its uncertainty estimated by Monte Carlo simulation. The predicted environmental concentrations of ABZ in surface water in the model region based on consumption (1.6-267 ng/L) were within the range of values obtained from the measured environmental concentrations of the same region (0.05-101,000 ng/L). Using these models with adapted input variables for eastern Africa, the predicted surface water concentration in that region was 19,600 ± 150 ng/L (95% CI). The calculated soil concentrations of ABZ in the model regions and the eastern Africa were found to be 0.057 ± 0.0 μg/kg and 0.022 ± 0.0 μg/kg, respectively. The environmental risk expressed as risk quotient of ABZ in eastern Africa estimated for the aquatic compartment (146 ± 1) indicated a significant environmental risk calling on appropriate actions from the competent authorities to reduce this risk in this region.
Collapse
Affiliation(s)
- Sileshi Belew
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia; Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia.
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
12
|
Kellerová P, Navrátilová M, Nguyen LT, Dimunová D, Raisová Stuchlíková L, Štěrbová K, Skálová L, Matoušková P. UDP-Glycosyltransferases and Albendazole Metabolism in the Juvenile Stages of Haemonchus contortus. Front Physiol 2020; 11:594116. [PMID: 33324241 PMCID: PMC7726322 DOI: 10.3389/fphys.2020.594116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
The nematode Haemonchus contortus, a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in H. contortus. An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in H. contortus. UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility. The UGTs family, in terms of the biotransformation of commonly used anthelmintics, has been well described in adults as a target stage. In contrast, the free-living juvenile stages of H. contortus have attracted less attention. The expression of UGTs considerably varies throughout the life cycle of the juvenile nematodes, suggesting their different roles. Furthermore, the constitutive expression in a susceptible strain with two resistant strains shows several resistance-related changes in UGTs expression, and the exposure of juvenile stages of H. contortus to albendazole (ABZ) and ABZ-sulfoxide (ABZSO; in sublethal concentrations) leads to the increased expression of several UGTs. The anthelmintic drug ABZ and its primary metabolite ABZSO biotransformation, tested in the juvenile stages, shows significant differences between susceptible and resistant strain. Moreover, higher amounts of glycosidated metabolites of ABZ are formed in the resistant strain. Our results show similarly, as in adults, the UGTs and glycosidations significant for resistance-related differences in ABZ biotransformation and warrant further investigation in their individual functions.
Collapse
Affiliation(s)
- Pavlína Kellerová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Martina Navrátilová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Linh Thuy Nguyen
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Diana Dimunová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Lucie Raisová Stuchlíková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Karolína Štěrbová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| | - Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, Hradec Králové, Czechia
| |
Collapse
|