1
|
Ma J, Yan X, Wang Y, Zhang W, Ma K, Li X, Shen F, Han Y. Insights into the effects of haze pollution on airborne bacterial communities and antibiotic resistance genes in fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126494. [PMID: 40409396 DOI: 10.1016/j.envpol.2025.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 04/24/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Fine particulate matter (PM2.5) is a key component of haze pollution and poses a substantial threat to human health. However, airborne bacteria and antibiotic-resistance genes (ARGs), which are important biological components of PM2.5, have received less attention. In this study, we investigated the combined effects of haze on airborne bacteria and ARGs in PM2.5. Overall, during haze days, high concentrations of airborne bacteria (haze: 4782.24 ± 2689.85 cells/m3; non-haze: 2866.00 ± 1753.95 cells/m3) were observed with unique bacterial community structures. At the genus level, Microvirga, Arthrobacter, and JG30-KF-CM45 were identified as the bacterial biomarkers of haze days. Neutral processes contributed more to the establishment of airborne bacterial communities on haze days (R2 = 0.724) than that on non-hazy days (R2 = 0.338). The pathogenicity of bacterial communities per unit volume of air was significantly higher during haze days (169.36 ± 8.36 cell/m3) than that during non-haze days (112.66 ± 5.92 cell/m3) (p < 0.05). Redundancy analysis indicated that relatively stable atmospheric conditions and high concentrations of water-soluble ions (Na+, Mg2+, Ca2+, and F-), metals (Cd, As, Mn, and Cr), and carbonaceous fractions (elemental carbon) in PM2.5 play critical roles in shaping the bacterial community during haze days. On haze days, airborne ARGs exhibited unique distribution characteristics and network structures with dominant bacteria. This study highlighted the impact of haze days on airborne bacteria and ARGs on PM2.5 and provides a reference for managing the risks of bioaerosols.
Collapse
Affiliation(s)
- Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China; School of Energy and Power Engineering, Beihang University, Beijing, 102206, China
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Wenbo Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Kaili Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xiaopin Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing, 102206, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Li X, Zhou Y. Can the Clean Heating Policy reduce carbon emissions? Evidence from northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50096-50109. [PMID: 36790712 DOI: 10.1007/s11356-023-25885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
The Clean Heating Policy aims to solve the problems of excessive energy consumption and severe air pollution caused by central heating in northern China. Whether this policy can effectively reduce carbon emissions remains unexplored. Using panel data representing 65 cities in northern China from 2010 to 2019, this paper constructs a dynamic spatial DID model to empirically study the carbon reduction effect of the Clean Heating Policy and its influence channels. The results are summarized as follows. First, the Clean Heating Policy can significantly reduce carbon emissions, and this conclusion holds after multiple robustness tests. The policy has a lag effect, but its spatial spillover effect and long-term effect are not significant. Second, the carbon reduction effect of the Clean Heating Policy is mainly achieved by optimizing the energy structure and improving the thermal efficiency of heat consumer terminals. Third, the carbon reduction effect varies by city and emission field. It is significant only in low-subsidy cities, high-carbon cities, and household fields. Fourth, there is a synergistic reduction relationship between the Clean Heating Policy and the low-carbon city policy. Based on the results of this paper, we propose policy implications, such as promoting policies in multiple ways and improving subsidy efficiency, and provide a reference for other countries.
Collapse
Affiliation(s)
- Xiang Li
- School of Applied Economics, Renmin University of China, Beijing, 100872, China.
| | - Yaodong Zhou
- School of Economics and Management, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
3
|
Xie W, Fan C, Qi J, Li H, Dong L, Hu W, Kojima T, Zhang D. Decrease of bioaerosols in westerlies from Chinese coast to the northwestern Pacific: Case data comparisons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161040. [PMID: 36572311 DOI: 10.1016/j.scitotenv.2022.161040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The dissemination of bioaerosols in the westerly wind from the Asian continent to the northwestern Pacific constantly links the land and marine ecosystems. Several observation campaigns targeting bioaerosols were conducted in the coastal city Qingdao of China (QD), at a coast site of Kumamoto in southwestern Japan (KM), and in the northwestern Pacific (NP) between 2014 and 2016. We compared the concentration of bioaerosols in the range of 1.1-7.0 μm obtained in those campaigns to investigate their variation in the westerly wind. The substantial influence of westerlies on bioaerosol concentration was confirmed in the three areas. In the case of non-dust air, the arrival of the continental air led to a 29 % decrease of bioaerosols at KM while a 57 % increase at NP, indicating that the concentration in non-dust air was lower than the local level in the island air while higher than that in the remote marine air. In case of dust occurrence, bioaerosols in the air decreased with the distance from the Asian continent at KM and NP consecutively, and the arrival of the air caused a 2-fold increase at KM and a 1.7-fold increase at NP. The relative concentration increase rate of bioaerosols (IRRC), defined as the ratio of the increment of bioaerosols caused by long-distance transported air to the local level in each area, decreased rapidly after the air left the continent in the dust cases, which is similar to the decrease of the dry deposition flux of dust reported in the literature. This result indicates that the reduction of bioaerosols in the dusty air was likely dominated by the removal of bioaerosols attached to dust particles.
Collapse
Affiliation(s)
- Wenwen Xie
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Chunlan Fan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Hongtao Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lijie Dong
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Tomoko Kojima
- Department Earth and Environmental Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
4
|
Ma L, Yabo SD, Lu L, Jiang J, Meng F, Qi H. Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130597. [PMID: 36584645 DOI: 10.1016/j.jhazmat.2022.130597] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Bioaerosols have received extensive attention due to their impact on climate, ecological environment, and human health. This study aimed to reveal the driving factors that structure bacterial community composition and the transmission route of antibiotic resistance genes (ARGs) in PM2.5. The results showed that the bacterial concentration in spring (8.76 × 105 copies/m3) was significantly higher than that in summer (1.03 × 105 copies/m3) and winter (4.74 × 104 copies/m3). Low temperatures and air pollution in winter negatively affected bacterial concentrations. Keystone taxa were identified by network analysis. Although about 50 % of the keystone taxa had low relative abundances, the strong impact of complex interactions between keystone taxa and other taxa on bacterial community structure deserved attention. The bacterial community assembly was dominated by stochastic processes (79.3 %). Interactions between bacteria and environmental filtering together affected bacterial community composition. Vertical gene transfer played an important role in the transmission of airborne ARGs. Given the potential integration and expression of ARGs in recipients, the human exposure risk due to high concentrations of ARGs and mobile genetic elements cannot be ignored. This study highlights human exposure to inhalable bacterial pathogens and ARGs in urban areas.
Collapse
Affiliation(s)
- Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stephen Dauda Yabo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinpan Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Higher Number of Yeast-like Fungi in the Air in 2018 after an Emergency Discharge of Raw Sewage to the Gulf of Gdańsk—Use of Contingency Tables. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the differences between the number of yeast-like fungi and molds in the coastal air of five coastal towns of the Gulf of Gdańsk in 2014–2017 vs. 2018, which saw an emergency discharge of sewage. In 2014–2017, a total of 62 duplicate samples were collected in the coastal towns of Hel, Puck, Gdynia, Sopot, and Gdańsk-Brzeźno. In 2018, after the emergency disposal of raw sewage, 26 air samples were collected. A Pearson chi-squared test of independence showed that during 2018 in Hel and Sopot, the mean number of molds and yeast-like fungi was higher than in 2014–2017. The result was significantly positive, p ≤ 2.22 × 10−16. The analysis of the General Asymptotic Symmetry Test showed that in Puck and Gdańsk-Brzeźno, the average number of Aspergillus sp. mold fungi was higher in 2018 after an emergency discharge of sewage into the Gulf of Gdańsk compared to the period 2014–2017. The result was not statistically significant. In addition, the average number of Penicillium sp. molds in 2018 in Gdańsk-Brzeźno was higher than in 2014–2017, but statistically insignificant (p = 0.9593). In 2018, the average number of Cladosporium sp. molds in Sopot was higher, but also statistically insignificant (p = 0.2114) compared to 2014–2017. Our results indicate that the study of the number of yeast-like fungi in the air may indicate coastal areas that may be particularly at risk of bacterial or mycological pathogens, e.g., after an emergency discharge of raw sewage.
Collapse
|
6
|
Chemical, Biological and Morphological Properties of Fine Particles during Local Rice Straw Burning Activities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158192. [PMID: 34360485 PMCID: PMC8346042 DOI: 10.3390/ijerph18158192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
Rice straw is commonly burned openly after harvesting in Malaysia and many other Asian countries where rice is the main crop. This operation emits a significant amount of air pollution, which can have severe consequences for indoor air quality, public health, and climate change. Therefore, this study focuses on determining the compositions of trace elements and the morphological properties of fine particles. Furthermore, the species of bacteria found in bioaerosol from rice burning activities were discovered in this study. For morphological observation of fine particles, FESEM-EDX was used in this study. Two main categories of particles were found, which were natural particles and anthropogenic particles. The zinc element was found during the morphological observation and was assumed to come from the fertilizer used by the farmers. ICP-OES identifies the concentration of trace elements in the fine particle samples. A cultured method was used in this study by using nutrient agar. From this study, several bacteria were identified: Exiguobavterium indicum, Bacillus amyloliquefaciens, Desulfonema limicola str. Jadabusan, Exiguobacterium acetylicum, Lysinibacillus macrolides, and Bacillus proteolyticus. This study is important, especially for human health, and further research on the biological composition of aerosols should be conducted to understand the effect of microorganisms on human health.
Collapse
|
7
|
Seasonal Variation Characteristics of Bacteria and Fungi in PM2.5 in Typical Basin Cities of Xi’an and Linfen, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microorganisms existing in airborne fine particulate matter (PM2.5) have key implications in biogeochemical cycling and human health. In this study, PM2.5 samples, collected in the typical basin cities of Xi’an and Linfen, China, were analyzed through high-throughput sequencing to understand microbial seasonal variation characteristics and ecological functions. For bacteria, the highest richness and diversity were identified in autumn. The bacterial phyla were dominated by Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Metabolism was the most abundant pathway, with the highest relative abundance found in autumn. Pathogenic bacteria (Pseudomonas, Acinetobacter, Serratia, and Delftia) were positively correlated with most disease-related pathways. Besides, C cycling dominated in spring and summer, while N cycling dominated in autumn and winter. The relative abundance of S cycling was highest during winter in Linfen. For fungi, the highest richness was found in summer. Basidiomycota and Ascomycota mainly constituted the fungal phyla. Moreover, temperature (T) and sulfur dioxide (SO2) in Xi’an, and T, SO2, and nitrogen dioxide (NO2) in Linfen were the key factors affecting microbial community structures, which were associated with different pollution characteristics in Xi’an and Linfen. Overall, these results provide an important reference for the research into airborne microbial seasonal variations, along with their ecological functions and health impacts.
Collapse
|
8
|
Maipas S, Panayiotides IG, Tsiodras S, Kavantzas N. COVID-19 Pandemic and Environmental Health: Effects and the Immediate Need for a Concise Risk Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:1178630221996352. [PMID: 33642862 PMCID: PMC7894687 DOI: 10.1177/1178630221996352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 05/12/2023]
Abstract
COVID-19 pandemic, as another disease emerging in the interface between animals and humans, has revealed the importance of interdisciplinary collaborations such as the One Health initiative. Environmental Health, whose role in the One Health concept is well established, has been associated with COVID-19 pandemic via various direct and indirect pathways. Modern lifestyle, climate change, environmental degradation, exposure to chemicals such as endocrine disruptors, and exposure to psychological stress factors impact human health negatively. As a result, many people are in the disadvantageous position to face the pandemic with an already impaired immune system due to their exposure to environmental health hazards. Moreover, the ongoing pandemic has been associated with outdoor and indoor air pollution, water and noise pollution, food security, and plastic pollution issues. Also, the inadequate infrastructure, the lack of proper waste and wastewater management, and the unequal social vulnerability reveal more linkages between Environmental Health and COVID-19 pandemic. The significant emerging ecological risk and its subsequent health implications require immediate risk analysis and risk communication strategies.
Collapse
Affiliation(s)
- Sotirios Maipas
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| | - Ioannis G Panayiotides
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kavantzas
- Master Program “Environment and Health. Management of Environmental Health Effects,” Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens General Hospital “Laikon,” Athens, Greece
| |
Collapse
|