1
|
Fakhri Y, Mahmoudizeh A, Hemmati F, Adiban M, Esfandiari Z, Mousavi Khaneghah A. The concentration of malachite green in fish: a systematic review, meta-analysis, and probabilistic risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-16. [PMID: 39871486 DOI: 10.1080/09603123.2025.2453971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
Malachite Green (MG) is an antibiotic with antifungal activity, which is illegal to use in agriculture due to its mutagenic and teratogenic properties. Several scientific papers have been published on MG in fish. Therefore, an attempt was made to determine the meta-analysis concentration of MG in fish based on countries and types of fish subgroups, as well as the health risks of consumers, using the Monte Carlo simulation (MCS) model. The three countries with the highest concentration of MG were Iran (14.697 µg/kg), Brazil (2.840 µg/kg), and China (2.277 µg/kg). The overall pooled concentration of MG in fish was 3.036 µg/kg, 95%CI (2.860-3.212 µg/kg), and the highest concentration of MG was observed in Pacu fish (6.603 µg/kg). The health risk assessment shows adults in Malaysia, China, and Iran and children in Italy, Spain, Brazil, Malaysia, China, and Iran are at considerable risk (MOE <10,000); hence, carrying out control plans in these countries is recommended.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Fatemeh Hemmati
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moayed Adiban
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, Saint Petersburg, Russia
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
2
|
Larcombe E, Alexander ME, Snellgrove D, Henriquez FL, Sloman KA. Current disease treatments for the ornamental pet fish trade and their associated problems. REVIEWS IN AQUACULTURE 2025; 17. [DOI: 10.1111/raq.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/21/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe trade in live ornamental fishes to be held as companion animals or displayed in public aquaria has an estimated global annual value of US$15–20 billion. Supply chains for ornamental pet fishes often involve many more parties than for fish farmed as food fishes, and at each stage, fishes are exposed to stressors including handling, confinement, crowding, mechanical disturbance, and poor water quality. If chronic, these stressors can compromise their immune system, making fishes more susceptible to pathogens. Mortality and morbidity from infectious disease can result in considerable welfare impacts and massive economic losses for the industry, and the range of infective agents seen in ornamental species is well documented. However, treating these diseases is not straightforward with practices varying greatly across the trade and with several approaches having unintended consequences, such as the emergence of resistant strains of pathogens. While disease treatments for a handful of fish species (e.g., koi, goldfish) have received focused research attention, for the home aquarium owner, there is an increasing reliance on products based on natural compounds which have received far less scientific attention. This review aims to highlight the gaps in our knowledge surrounding the range of disease treatments used across the ornamental pet fish trade, with a particular focus on freshwater tropical species destined for home aquaria. Consideration is given to the potential problems arising from these treatments, including microbial resistance and effects of treatments themselves on fish health and welfare.
Collapse
Affiliation(s)
- E. Larcombe
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - M. E. Alexander
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - D. Snellgrove
- Waltham Petcare Science Institute Waltham‐on‐the‐Wolds Leicestershire UK
| | - F. L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - K. A. Sloman
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| |
Collapse
|
3
|
Madesh S, Gopi S, Sau A, Rajagopal R, Namasivayam SKR, Arockiaraj J. Chemical contaminants and environmental stressors induced teratogenic effect in aquatic ecosystem - A comprehensive review. Toxicol Rep 2024; 13:101819. [PMID: 39649382 PMCID: PMC11625353 DOI: 10.1016/j.toxrep.2024.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/10/2024] Open
Abstract
Aquatic environments, including marine and freshwater ecosystems, are vital for ecological balance and biodiversity. The rising global demand for aquaculture products necessitates increased production, with intensified aquaculture practices posing significant environmental risks. This review explores the pathways through which chemical pollutants, heavy metals, pharmaceuticals, and environmental stressors induce teratogenic effects in aquatic species. The review highlights the impact of pesticide include triazine herbicides, organophosphate and organochlorine insecticides, and carbamates on aquatic life, emphasizing their interference with endocrine systems and developmental processes. Heavy metals like mercury, lead, cadmium, arsenic, and chromium are noted for their persistence and bioaccumulative properties, disrupting cellular and hormonal functions. Pharmaceuticals, including NSAIDs, antibiotics, and chemotherapeutic agents, exert teratogenic effects by disrupting physiological and developmental pathways. Environmental stressors includes temperature fluctuations, salinity variations, pH changes, and oxygen level imbalances exacerbate the teratogenic impact of pollutants. This review highlights the importance of comprehensive environmental management and understanding these complex interactions is essential for formulating efficient strategies to safeguard the effective measures to protect aquatic ecosystems and the biodiversity.
Collapse
Affiliation(s)
- S. Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Sanjai Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Avra Sau
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - S. Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| |
Collapse
|
4
|
Liu X, Han B, He PL, Wang Q, Chen ZQ. Modeling competitive biosorption for methylene blue removal on rape straw powders using response surface methodology in a ternary dye aqueous solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1453-1464. [PMID: 38505937 DOI: 10.1080/15226514.2024.2327614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The improvement of biosorption efficiency for selective dye removal in a multi-dye aqueous system has become an increasingly significant research topic. However, the competitive effects of coexisting dyes and the target dye in such systems remain uncertain due to complex interactions between adsorbent and coexisting dyes. Therefore, in this research, response surface methodology (RSM) model was effectively employed to investigate the competitive effects of allura red (AR) and malachite green (MG) on methylene blue (MB) removal in a ternary dye aqueous system using three different parts of rape straw powders. In the current design of RSM, the initial concentrations of AR and MG dyes ranging from 0 mg·L-1 to 500 mg·L-1 were considered as influencing factors, while the removal rates of MB on adsorbents at an initial concentration of 500 mg·L-1 were established as response values. The RSM models exhibited high correlation coefficients with adjusted R2 values of 0.9908 (pith core), 0.9870 (seedpods), and 0.9902 (shells), respectively, indicating a close fitted between predicted and actual values. The proposed models indicated that the perturbation effects of initial AR and MG concentrations were observed on the removal rates of MB by three types of rape straw powders in a ternary dye aqueous system, resulting in a decrease in MB removal rates, particularly at higher initial AR concentration due to stronger competitive effects compared to initial MG concentration. The structures of rape straw powders, including pith core, seedpods and shell, were analyzed using scanning eletron microscoe (SEM), energy dispersive spectroscopy (EDS), N2 physisorption isotherm, frourier transform infared spectroscopy (FTIR), Zeta potential classes and fluorescence spectrum before and after adsorption of MB in various dye aqueous systems. The characteristics of rape straw powders suggested that similar adsorption mechanisms, such as electrostatic attraction, pore diffusion, and group complex formation for MB, AR, and MG, respectively, occurred on the surfaces of adsorbents during their respective adsorption processes. This leads to significant competitive effects on the removal rates of MB in a ternary dye aqueous system, which are particularly influenced by initial AR concentrations as confirmed through fluorescence spectrum analysis.
Collapse
Affiliation(s)
- Xin Liu
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Bin Han
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Pei-Lin He
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Qian Wang
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| | - Zhao-Qiong Chen
- School of Public Health, Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
5
|
de Almada Vilhena AO, Lima KMM, de Azevedo LFC, Rissino JD, de Souza ACP, Nagamachi CY, Pieczarka JC. The synthetic dye malachite green found in food induces cytotoxicity and genotoxicity in four different mammalian cell lines from distinct tissuesw. Toxicol Res (Camb) 2023; 12:693-701. [PMID: 37663817 PMCID: PMC10470350 DOI: 10.1093/toxres/tfad059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/13/2023] [Accepted: 06/02/2023] [Indexed: 09/05/2023] Open
Abstract
Malachite green (MG) is a synthetic dye that uses ranges from its application as a tissue dye to that as an antiparasitic in aquaculture. Several studies have reported the presence of this compound in food dyes and in the meat of fish raised in captivity for human consumption, suggesting risks both for the end user and for as those who handle these products because of MG toxic properties described in the literature. Here we evaluated the cytotoxic and genotoxic profiles of MG in four different cell lines (ACP02, L929, MNP01, and MRC-5). Two of these cell lines are stomach cells (normal and cancer lineages) and the potential ingestion of MG makes this a relevant cell type. Cells were treated with MG at concentrations ranging from 0.1 μM to 100 μM, and tested by MTT assay, a differential apoptosis/necrosis assay (EB/OA), the micronucleus test (MN), and the comet assay. MG exhibits dose-dependent cytotoxicity toward all of the tested cell types; higher concentrations of MG cause cell necrosis, while lower concentrations induce apoptosis. MG has a genotoxic profile increasing the rates of micronuclei, nucleoplasmic bridges, nuclear buds, and DNA fragmentation; L929 and MRC-5 showed more sensibility than ACP02 and MNP01.
Collapse
Affiliation(s)
- Andryo O de Almada Vilhena
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
- Instituto Tocantinense Presidente Antônio Carlos (ITPAC/Afya), Abaetetuba, PA, Brazil
| | - Karina M M Lima
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
- Campus Tomé Açu, Universidade Federal Rural da Amazônia, Tomé Açu, PA, Brazil
| | - Luana F C de Azevedo
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| | - Jorge D Rissino
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| | - Augusto C P de Souza
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
- Laboratório de Estudos da Ictiofauna da Amazônia, Campus Abaetetuba, Instituto Federal do Pará, Abaetetuba, PA, Brazil
| | - Cleusa Y Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| | - Julio C Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Laboratório de Cultura de Células, Instituto de Ciências Biológicas, Universidade Federal do Pará/Parque de Ciência e Tecnologia do Guamá, Avenida Perimetral da Ciência Km 01 – Guamá, Belém CEP 66075-750, PA, Brazil
| |
Collapse
|
6
|
Poopal RK, Ashwini R, Ramesh M, Li B, Ren Z. Triphenylmethane dye (C 52H 54N 4O 12) is potentially a hazardous substance in edible freshwater fish at trace level: toxicity, hematology, biochemistry, antioxidants, and molecular docking evaluation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28759-28779. [PMID: 36401692 DOI: 10.1007/s11356-022-24206-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Malachite green (C52H54N4O12) is a synthetic dye that is used in textile industries as a colorant and in aquaculture sectors to contain microbial damage. Aquatic contamination of malachite green (MG) has been reported globally. Fish is the highest trophic organism among aquatic inhabitants, highly sensitive to waterborne contaminants (metals, coloring agents, etc.). Toxicity of waterborne chemicals on nontarget organisms can be determined by assessing biomarkers. Assessing blood parameters and tissue antioxidants (enzymatic and nonenzymatic) is useful to evaluate MG toxicity. To initiate the MG toxicity data for freshwater fish (Cyprinus carpio), the median lethal toxicity was primarily evaluated. Then, hematological, blood biochemical (glucose, protein, and cholesterol) and tissue biochemical (amino acids, lipids), and vital tissue (gills, liver, and kidney) antioxidant capacity (CAT, LPO, GST, GR, POxy, vitamin C, and GSH) of C. carpio were analyzed under acute (LC50-96 h) and sublethal (Treatment I-1/10th and Treatment II-1/5th LC50-96 h) exposure periods (28 days). Molecular docking for MG with hemoglobin was also obtained. Biomarkers examined were affected in the MG-treated groups with respect to the control group. Significant changes (p < 0.05) were observed in hematology (Hb, RBCs, and WBCs), glucose, proteins, lipids and tissue CAT, LPO, and GST activities under acute MG exposure. In sublethal treatment groups, biomarkers studied were significant (p < 0.05) throughout the study period. The potential for MG binding to hemoglobin was tested in this study. MG is potentially a multiorgan toxicant. Literally a chemical that is harmful to the aquatic environment if safety is concerned.
Collapse
Affiliation(s)
- Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Rajan Ashwini
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, TamilNadu, India
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
7
|
Magara G, Sangsawang A, Pastorino P, Bellezza Oddon S, Caldaroni B, Menconi V, Kovitvadhi U, Gasco L, Meloni D, Dörr AJM, Prearo M, Federici E, Elia AC. First insights into oxidative stress and theoretical environmental risk of Bronopol and Detarox® AP, two biocides claimed to be ecofriendly for a sustainable aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146375. [PMID: 34030372 DOI: 10.1016/j.scitotenv.2021.146375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Bronopol and Detarox® AP are broad spectrum antimicrobial biocides of growing interest for the aquaculture sector. While their effectiveness against aquatic pathogens has been demonstrated, toxicity data on wild or farmed species are still lacking, as is information on their potential environmental risk for aquatic ecosystems. With this study, we assessed the acute and sublethal toxicity of Bronopol and Detarox® AP in the freshwater bivalve Sinanodonta woodiana and their theoretical risk for aquatic ecosystem. The 96-h median lethal concentration (LC50) was determined using the acute toxicity test, while for the sublethal toxicity test the bivalves were exposed to two concentrations for 14 days of Bronopol (2.5 and 50 mg/L) and Detarox® AP (1.11 and 22.26 mg/L) followed by a 14-day withdrawal period. Biocide-mediated oxidative processes were investigated via a panel of oxidative stress biomarkers (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase). Theoretical environmental risk assessment of both biocides, with predicted concentration of no effect (PNEC), expected theoretical concentration (TEC) in the environment, and risk quotient (RQ) was performed. TEC was calculated using a model based on the size of the aquaculture facility and the receiving basin, the estimated quantity of biocide dissolved in water, and published data on biocide stability in water. Although the LC50 was higher for Bronopol (2440 mg/L) than for Detarox® AP (126 mg/L), fluctuations in oxidative stress biomarkers levels indicated that both biocides exert a slight oxidative pressure on S. woodiana. Theoretical environmental risk assessment suggested a muted risk with Detarox® AP and greater eco-sustainability compared to Bronopol.
Collapse
Affiliation(s)
- Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Akkarasiri Sangsawang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Aquaculture, Faculty of Fisheries, Kasetsart University. Bangkok 10900, Thailand
| | - Paolo Pastorino
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy.
| | - Sara Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Vasco Menconi
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Uthaiwan Kovitvadhi
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy; Institute of Science of Food Production, National Research Council, Grugliasco (TO), Italy
| | - Daniela Meloni
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | | | - Marino Prearo
- Veterinary Medical Research Institute for Piedmont, Liguria and Aosta Valley, Torino, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|