2
|
Gong J, Yin Z, Lei Y, Lu X, Zhang Q, Cai C, Chai Q, Chen H, Chen R, Chen W, Cheng J, Chi X, Dai H, Dong Z, Geng G, Hu J, Hu S, Huang C, Li T, Li W, Li X, Lin Y, Liu J, Ma J, Qin Y, Tang W, Tong D, Wang J, Wang L, Wang Q, Wang X, Wang X, Wu L, Wu R, Xiao Q, Xie Y, Xu X, Xue T, Yu H, Zhang D, Zhang L, Zhang N, Zhang S, Zhang S, Zhang X, Zhang Z, Zhao H, Zheng B, Zheng Y, Zhu T, Wang H, Wang J, He K. The 2023 report of the synergetic roadmap on carbon neutrality and clean air for China: Carbon reduction, pollution mitigation, greening, and growth. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100517. [PMID: 39717181 PMCID: PMC11665702 DOI: 10.1016/j.ese.2024.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
The response to climate change and air pollution control demonstrates strong synergy across scientific mechanisms, targets, strategies, and governance systems. This report, based on a monitoring indicator system for coordinated governance of air pollution and climate change, employs an interdisciplinary approach combining natural and social sciences. It establishes 20 indicators across five key areas: air pollution and climate change, governance systems and practices, structural transformation and technologies, atmospheric components and emission reduction pathways, and health impacts and co-benefits. This report tries to provide actionable insights into the interconnectedness of air pollution and climate governance. It highlights key policy gaps, presents updated indicators, and offers a refined monitoring framework to track progress toward China's dual goals of reducing emissions and improving air quality. Compared to previous editions, this year's report has updated four key indicators: meteorological impacts on air quality, climate change and its effects, governance policies, and low-carbon building energy systems. The aim is to further refine the monitoring framework, track progress, and establish a comprehensive theory for collaborative governance while identifying challenges and proposing solutions for China's pathway to carbon neutrality and clean air. The report comprises six chapters. The executive summary chapter is followed by analyzing air pollution and climate change interactions. Governance systems and practices are discussed in the third chapter, focusing on policy implementation and local experiences. The fourth chapter addresses structural transformations and emission reduction technologies, including energy and industrial shifts, transportation, low-carbon buildings, carbon capture and storage, and power systems. The fifth chapter outlines atmospheric component dynamics and emission pathways, presenting insights into emission drivers and future strategies. The sixth chapter assesses health impacts and the benefits of coordinated actions. Since 2019, China Clean Air Policy Partnership has produced annual reports on China's progress in climate and air pollution governance, receiving positive feedback. In 2023, the report was co-developed with Tsinghua University's Carbon Neutrality Research Institute, involving over 100 experts and multiple academic forums. The collaboration aims to continuously improve the indicator system and establish the report as a key resource supporting China's efforts in pollution reduction, carbon mitigation, greening, and sustainable growth.
Collapse
Affiliation(s)
- Jicheng Gong
- State Key Joint Laboratory for Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Zhicong Yin
- Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science &Technology, Nanjing, 210044, China
| | - Yu Lei
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing, 100041, China
- Center for Carbon Neutrality, Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Xi Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Cilan Cai
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Qimin Chai
- National Center for Climate Change, Strategy and International Cooperation, Beijing, 100035, China
| | - Huopo Chen
- Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, 200032, China
| | - Wenhui Chen
- School of Economics and Management, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Cheng
- Department of Earth System Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Xiyuan Chi
- National Meteorological Center, China Meteorological Administration, Beijing, 100081, China
| | - Hancheng Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhanfeng Dong
- Institute of Eco-Environmental Management and Policy, Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Guannan Geng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shan Hu
- China Association of Building Energy Efficiency, Beijing, 100029, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wei Li
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Xiaomei Li
- National Center for Climate Change, Strategy and International Cooperation, Beijing, 100035, China
| | - Yongsheng Lin
- Business School, Beijing Normal University, Beijing, 100875, China
| | - Jun Liu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinghui Ma
- Shanghai Typhoon Institute, Shanghai Meteorological Service, Shanghai, 200030, China
| | - Yue Qin
- State Key Joint Laboratory for Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Weiqi Tang
- Fudan Development Institute, Shanghai, 200433, China
| | - Dan Tong
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Jiaxing Wang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Lijuan Wang
- Public Meteorological Service Center, China Meteorological Administration, Beijing, 100081, China
| | - Qian Wang
- Shanghai Environmental Monitoring Center, Shanghai, 200235, China
| | - Xuhui Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuying Wang
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Libo Wu
- School of Economics, School of Data Science, Fudan University, Shanghai, 200433, China
| | - Rui Wu
- Transport Planning and Research Institute (TPRI) of the Ministry of Transport, Beijing, 100028, China
| | - Qingyang Xiao
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, 100191, China
| | - Xiaolong Xu
- China Association of Building Energy Efficiency, Beijing, 100029, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100080, China
| | - Haipeng Yu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Da Zhang
- Institute of Energy, Environment, and Economy, Tsinghua University, Beijing, 100084, China
| | - Li Zhang
- Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Ning Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shaohui Zhang
- School of Economics and Management, Beihang University, Beijing, 100191, China
| | - Shaojun Zhang
- State Key Joint Laboratory for Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Xian Zhang
- The Administrative Centre for China's Agenda 21 (ACCA21), Ministry of Science and Technology (MOST), Beijing, 100038, China
| | - Zengkai Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hongyan Zhao
- Center for Atmospheric Environmental Studies, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Bo Zheng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yixuan Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution and Greenhouse Gases Co-control, Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Tong Zhu
- State Key Joint Laboratory for Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Huijun Wang
- Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science &Technology, Nanjing, 210044, China
- Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jinnan Wang
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing, 100041, China
- Center for Carbon Neutrality, Chinese Academy of Environmental Planning, Beijing, 100041, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Kazi DS, Katznelson E, Liu CL, Al-Roub NM, Chaudhary RS, Young DE, Mcnichol M, Mickley L, Kramer DB, Cascio WE, Bernstein AS, Rice MB. Climate Change and Cardiovascular Health: A Systematic Review. JAMA Cardiol 2024; 9:748-757. [PMID: 38865135 PMCID: PMC11366109 DOI: 10.1001/jamacardio.2024.1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Importance Climate change may increase the risk of adverse cardiovascular outcomes by causing direct physiologic changes, psychological distress, and disruption of health-related infrastructure. Yet, the association between numerous climate change-related environmental stressors and the incidence of adverse cardiovascular events has not been systematically reviewed. Objective To review the current evidence on the association between climate change-related environmental stressors and adverse cardiovascular outcomes. Evidence Review PubMed, Embase, Web of Science, and Cochrane Library were searched to identify peer-reviewed publications from January 1, 1970, through November 15, 2023, that evaluated associations between environmental exposures and cardiovascular mortality, acute cardiovascular events, and related health care utilization. Studies that examined only nonwildfire-sourced particulate air pollution were excluded. Two investigators independently screened 20 798 articles and selected 2564 for full-text review. Study quality was assessed using the Navigation Guide framework. Findings were qualitatively synthesized as substantial differences in study design precluded quantitative meta-analysis. Findings Of 492 observational studies that met inclusion criteria, 182 examined extreme temperature, 210 ground-level ozone, 45 wildfire smoke, and 63 extreme weather events, such as hurricanes, dust storms, and droughts. These studies presented findings from 30 high-income countries, 17 middle-income countries, and 1 low-income country. The strength of evidence was rated as sufficient for extreme temperature; ground-level ozone; tropical storms, hurricanes, and cyclones; and dust storms. Evidence was limited for wildfire smoke and inadequate for drought and mudslides. Exposure to extreme temperature was associated with increased cardiovascular mortality and morbidity, but the magnitude varied with temperature and duration of exposure. Ground-level ozone amplified the risk associated with higher temperatures and vice versa. Extreme weather events, such as hurricanes, were associated with increased cardiovascular risk that persisted for many months after the initial event. Some studies noted a small increase in cardiovascular mortality, out-of-hospital cardiac arrests, and hospitalizations for ischemic heart disease after exposure to wildfire smoke, while others found no association. Older adults, racial and ethnic minoritized populations, and lower-wealth communities were disproportionately affected. Conclusions and Relevance Several environmental stressors that are predicted to increase in frequency and intensity with climate change are associated with increased cardiovascular risk, but data on outcomes in low-income countries are lacking. Urgent action is needed to mitigate climate change-associated cardiovascular risk, particularly in vulnerable populations.
Collapse
Affiliation(s)
- Dhruv S. Kazi
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Harvard Global Health Institute, Cambridge, Massachusetts
| | - Ethan Katznelson
- Department of Cardiology, Weill Cornell Medical Center, New York, NY, United States
| | - Chia-Liang Liu
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Nora M. Al-Roub
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Richard S. Chaudhary
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Diane E. Young
- Knowledge Services, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Megan Mcnichol
- Knowledge Services, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Loretta Mickley
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Daniel B. Kramer
- Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Wayne E. Cascio
- United States Environmental Protection Agency, Durham, North Carolina
| | - Aaron S. Bernstein
- Harvard Medical School, Boston, Massachusetts
- Harvard Global Health Institute, Cambridge, Massachusetts
- Center for Climate, Health, and Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of General Pediatrics, Boston Children’s Hospital
| | - Mary B. Rice
- Harvard Medical School, Boston, Massachusetts
- Pulmonary, Critical Care & Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
4
|
Cheng B, Ma Y, Qin P, Wang W, Zhao Y, Liu Z, Zhang Y, Wei L. Characterization of air pollution and associated health risks in Gansu Province, China from 2015 to 2022. Sci Rep 2024; 14:14751. [PMID: 38926518 PMCID: PMC11208435 DOI: 10.1038/s41598-024-65584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution poses a major threat to both the environment and public health. The air quality index (AQI), aggregate AQI, new health risk-based air quality index (NHAQI), and NHAQI-WHO were employed to quantitatively evaluate the characterization of air pollution and the associated health risk in Gansu Province before (P-I) and after (P-II) COVID-19 pandemic. The results indicated that AQI system undervalued the comprehensive health risk impact of the six criteria pollutants compared with the other three indices. The stringent lockdown measures contributed to a considerable reduction in SO2, CO, PM2.5, NO2 and PM10; these concentrations were 43.4%, 34.6%, 21.4%, 17.4%, and 14.2% lower in P-II than P-I, respectively. But the concentration of O3 had no obvious improvement. The higher sandstorm frequency in P-II led to no significant decrease in the ERtotal and even resulted in an increase in the average ERtotal in cities located in northwestern Gansu from 0.78% in P-I to 1.0% in P-II. The cumulative distribution of NHAQI-based population-weighted exposure revealed that 24% of the total population was still exposed to light pollution in spring during P-II, while the air quality in other three seasons had significant improvements and all people were under healthy air quality level.
Collapse
Affiliation(s)
- Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Pengpeng Qin
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Wanci Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuhan Zhao
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Zongrui Liu
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Linbo Wei
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|