1
|
Nahwani A, Soeprijanto S, Widodo E. Strategic model for integrating biogas a framework for sustainable energy integration in agro-industries. Sci Rep 2024; 14:31515. [PMID: 39733147 DOI: 10.1038/s41598-024-83181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.5 MW, can produce around 13,140 MWh per year. The annual return on investment (ROI) is around 37.13%. With this ROI value, the payback period is 31 months. The overall reduction of greenhouse gases is approximately 77,826 tons CO2 eq/year. The potential value of carbon trading is about USD 3,113,040 per year. This strategic model presents a novel approach by integrating biogas energy production with a customized wastewater treatment system adapted to biodigesters' effluent characteristics. It offers a sustainable, economically feasible, and scalable solution, combining resource recovery, waste minimization, and potential for carbon trading into a unified system. The novelty of this research lies in maximizing the utility of biogas plants by efficiently treating and reusing wastewater, creating a closed-loop, zero-waste process. Future research on hybrid systems integrating Biogas power plants by focusing on efficiency optimization, economic feasibility, environmental impacts, and innovative approaches like AI and blockchain could make the hybrid system a more robust, scalable, and sustainable solution. Thus, the framework based on the results of this study finds tools that can maximize and integrate energy sources, especially biogas, in the agro-industrial sector.
Collapse
Affiliation(s)
- Ahmad Nahwani
- Interdisciplinary School of Management & Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| | - Soeprijanto Soeprijanto
- Department of Industrial Chemical Engineering, Faculty of Vocational Studies, Surabaya, Indonesia
| | - Erwin Widodo
- Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| |
Collapse
|
2
|
Liang DK, Prabu S, Chiang KY. Characteristics of hydrogen energy yield in steam gasification of coffee residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33807-33818. [PMID: 38684616 DOI: 10.1007/s11356-024-33499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Coffee residues (CRs) were gasified using a laboratory-scale fluidized bed gasifier with an air/steam mixture as the carrier gas. The gasification was conducted at an equivalence ratio (ER) of 0.3, and different operation temperatures (700, 800, and 900 °C) and steam-to-biomass (S/B) ratios (0, 0.75, and 1.5) were applied. Increasing temperature without steam boosted H2 and CO concentrations in producer gas, raising lower heating value (LHV) and cold gas efficiency (CGE) through endothermic reactions like Boudouard, tar cracking, and water-gas formation. At 900 °C, gas had LHV of 3.76 MJ/Nm3 and CGE of 22.47%. It was elevating temperature from 700 to 900 °C and S/B ratio to 1.5 raised H2 and CO concentrations from 2.04 to 8.60% and from 9.56 to 11.8%, respectively. This also increased LHV from 2.23 to 3.89 MJ/Nm3 and CGE from 11.28 to 25.08%. The steam gasification reaction was found to increase the H2 concentration and was thus considered effective in converting CRs to syngas and increasing energy production. Overall, the study successfully demonstrated the feasibility of steam gasification as a means of converting coffee residues to syngas and increasing energy production. The results also highlighted the importance of operating temperature and S/B ratio in improving the gasification process.
Collapse
Affiliation(s)
- Dan-Kai Liang
- Graduate Institute of Environmental Engineering, National Central University, Zhong-Da Rd., Zhong-Li District, Tao-Yuan City, Taiwan
| | - Samikannu Prabu
- Graduate Institute of Environmental Engineering, National Central University, Zhong-Da Rd., Zhong-Li District, Tao-Yuan City, Taiwan
| | - Kung-Yuh Chiang
- Graduate Institute of Environmental Engineering, National Central University, Zhong-Da Rd., Zhong-Li District, Tao-Yuan City, Taiwan.
| |
Collapse
|
3
|
Alam SN, Singh B, Guldhe A, Raghuvanshi S, Sangwan KS. Sustainable valorization of macroalgae residual biomass, optimization of pyrolysis parameters and life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170797. [PMID: 38342457 DOI: 10.1016/j.scitotenv.2024.170797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The major challenges for the current climate change issue are an increase in global energy demand, a limited supply of fossil fuels, and increasing carbon footprints from fossil fuels, which have necessitated the exploration of sustainable alternatives to fossil fuels. Biorefineries offer a promising path to sustainable fuel production, converting biomass into biofuels using diverse technologies. Aquatic biomass, such as macroalgae in this context, represents an abundant and renewable biomass resource that can be cultivated from water bodies without competing with traditional agricultural land. Despite this, the potential of macroalgae for biofuel production remains largely untapped, with very limited studies addressing their viability and efficiency. This study investigates the efficient conversion of unexplored macroalgae biomass through a biorefinery process that involves lipid extraction to produce biodiesel, along with the production of biochar and bio-oil from the pyrolysis of residual biomass. To improve the effectiveness and overall performance of the pyrolysis system, Response Surface Methodology (RSM) was utilized through a Box-Behnken design to systematically investigate how alterations in temperature, reaction time, and catalyst concentration influence the production of bio-oil and biochar to maximize their yields. The results showed the highest bio-oil yield achieved to be 36 %, while the highest biochar yield reached 45 %. The integration of Life Cycle Assessment (LCA) in the study helps to assess carbon emission and environmental burdens and identify potential areas for optimization, such as resource efficiency, waste management, and energy utilization. The LCA results contribute to the identification of potential environmental hotspots and guide the development of strategies to optimize the overall sustainability of the biofuel production process. The LCA results indicate that the solvent (chloroform) used in transesterification contributes significantly to greenhouse gas emissions and climate change impacts. Therefore, it is crucial to explore alternative, safe solvents that can mitigate the environmental impacts of transesterification.
Collapse
Affiliation(s)
- Shahrukh Nawaj Alam
- Department of Environmental Sciences, Central University of Jharkhand, Cheri-Manatu, Ranchi 835 222, India
| | - Bhaskar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Cheri-Manatu, Ranchi 835 222, India.
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai 410206, India.
| | - Smita Raghuvanshi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Rajasthan, India
| | - Kuldip Singh Sangwan
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Rajasthan, India
| |
Collapse
|
4
|
Quintero-Naucil M, Salcedo-Mendoza J, Solarte-Toro JC, Aristizábal-Marulanda V. Assessment and comparison of thermochemical pathways for the rice residues valorization: pyrolysis and gasification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32241-0. [PMID: 38319422 DOI: 10.1007/s11356-024-32241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Lignocellulosic biomass conversion applying thermochemical routes has been postulated as an alternative for generating renewable energy. This research compares energy-driven biorefineries based on two thermochemical routes addressed to upgrade rice husk and rice straw produced in the Department of Sucre-Colombia. Initially, this research analyzes the physico-chemical and structural characterization of the rice residues. Four different scenarios were proposed to compare the energy-driven biorefineries based on fast pyrolysis and gasification considering technical, economic, and environmental metrics. These biorefineries were simulated using the Aspen Plus V.14.0 software. The novelty of this research is focused on the identification of the biorefinery with the best techno-economic, energetic, and environmental performance in the Colombian context. Economic and environmental analyses were done by using economic metrics and emissions. From an economic perspective, the stand-alone gasification process did not have a positive economic margin. In contrast, the fast pyrolysis process has the best economic performance since this process has a positive profit margin. Indeed, scenario 1 (fast pyrolysis of both rice residues) presented an economic margin of 13.75% and emissions of 2170.92 kgCO2eq/kg for 10 years. However, this scenario was not energetically the best, holding second place due to the feedstock requirements, compared to gasification. The biorefinery scenario 1 has the best performance.
Collapse
Affiliation(s)
- Myriam Quintero-Naucil
- Facultad de Ingeniería, Grupo Procesos Agroindustriales y Desarrollo Sostenible (PADES), Universidad de Sucre, Sincelejo, Colombia
| | - Jairo Salcedo-Mendoza
- Facultad de Ingeniería, Grupo Procesos Agroindustriales y Desarrollo Sostenible (PADES), Universidad de Sucre, Sincelejo, Colombia
| | - Juan Camilo Solarte-Toro
- Grupo de Investigación en Procesos Químicos, Catalíticos y Biotecnológicos, Instituto de Biotecnología y Agroindustria, Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia
| | - Valentina Aristizábal-Marulanda
- Facultad de Ingeniería, Grupo Procesos Agroindustriales y Desarrollo Sostenible (PADES), Universidad de Sucre, Sincelejo, Colombia.
- Facultad de Tecnologías, Escuela de Tecnología Química, Grupo de Investigación en Desarrollo de Procesos Químicos, Universidad Tecnológica de Pereira, Carrera 27 #10-02 Álamos, Block 6, 660003, Pereira, Colombia.
| |
Collapse
|
5
|
Bajpai S, Nemade PR. An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39494-39536. [PMID: 36787076 DOI: 10.1007/s11356-023-25830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Water hyacinth (WH) has become a considerable concern for people across the globe due to its environmental and socio-economic hazards. Researchers are still trying to control this aquatic weed effectively without other environmental or economic losses. Research on WH focuses on converting this omnipresent excessive biomass into value-added products. The potential use of WH for phytoremediation and utilizing waste biomass in various industries, including agriculture, pharmaceuticals, and bioenergy, has piqued interest. The use of waste WH biomass as a feedstock for producing bioenergy and value-added chemicals has emerged as an eco-friendly step towards the circular economy concept. Here, we have discussed the extraction of bio-actives and cellulose as primary bioproducts, followed by a detailed discussion on different biomass conversion routes to obtain secondary bioproducts. The suggested multi-objective approach will lead to cost-effective and efficient utilization of waste WH biomass. Additionally, the present review includes a discussion of the SWOT analysis for WH biomass and the scope for future studies. An integrated biorefinery scheme is proposed for the holistic utilization of this feedstock in a cascading manner to promote the sustainable and zero-waste circular bio-economy concept.
Collapse
Affiliation(s)
- Shruti Bajpai
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India
| | - Parag R Nemade
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India.
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
6
|
Saravanakumar A, Vijayakumar P, Hoang AT, Kwon EE, Chen WH. Thermochemical conversion of large-size woody biomass for carbon neutrality: Principles, applications, and issues. BIORESOURCE TECHNOLOGY 2023; 370:128562. [PMID: 36587772 DOI: 10.1016/j.biortech.2022.128562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
Collapse
Affiliation(s)
- Ayyadurai Saravanakumar
- Centre for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Centre for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India; Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
7
|
Saeed S, Samer M, Mohamed MSM, Abdelsalam E, Mohamed YMA, Abdel-Hafez SH, Attia YA. Implementation of graphitic carbon nitride nanomaterials and laser irradiation for increasing bioethanol production from potato processing wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34887-34897. [PMID: 35040058 DOI: 10.1007/s11356-021-18119-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 05/09/2023]
Abstract
Agricultural and agro-industrial wastes (e.g., potato peel waste) are causing severe environmental problems. The processes of pretreatment, saccharification, and fermentation are the major obstacles in bioethanol production from wastes and must be overcome by efficient novel techniques. The effect of exposing the fungi (yeast) Saccharomyces cerevisiae to laser source with the addition of graphitic carbon nitride nanosheets (g-C3N4) with different concentrations on bioethanol production was investigated through the implementation of a batch anaerobic system and using potato peel waste (PPW). Dichromate test was implemented as quantitative analysis for quantification of the bioethanol yield. The benefits of this test were the appearance of green color indicating the identification of ethanol (C2H5OH) by bare eye and the ease to calculate the bioethanol yield through UV-visible spectrophotometry. The control sample (0.0 ppm of g-C3N4) showed only a 4% yield of bioethanol; however, by adding 150 ppm to PPW medium, 22.61% of ethanol was produced. Besides, laser irradiations (blue and red) as influencing parameters were studied with and without the addition of g-C3N4 nanomaterials aiming to increase the bioethanol. It was determined that the laser irradiation can trigger the bioethanol production (in case of red: 13.13% and in case of blue: 16.14% yields, respectively) compared to the control sample (in absence of g-C3N4). However, by adding different concentrations of g-C3N4 nanomaterials from 5 to 150 ppm, the bioethanol yield was increased as follows: in case of red: 56.11% and, in case of blue: 56.77%, respectively. It was found that using fungi and exposing it to the blue laser diode source having a wavelength of 450 nm and a power of 250 mW for a duration of 30 min with the addition of 150 mg L-1 of g-C3N4 nanomaterials delivered the highest bioethanol yield from PPW.
Collapse
Affiliation(s)
- Samar Saeed
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mohamed Samer
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Essam Abdelsalam
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Yasser M A Mohamed
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Shams H Abdel-Hafez
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
8
|
Fetyan NAH, El-Sayed AEKB, Ibrahim FM, Attia YA, Sadik MW. Bioethanol production from defatted biomass of Nannochloropsis oculata microalgae grown under mixotrophic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2588-2597. [PMID: 34374017 DOI: 10.1007/s11356-021-15758-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the economic feasibility and environmental sustainability of microalgal bioethanol production, a nontoxic, copious agricultural waste, sugarcane bagasse aqueous extract (SBAE) was used for cultivating Nannochloropsis oculata microalga (NNO-1 UTEX Culture LB 2164) as potential sources of substitutes for traditional nutrition to reduce the costs in cultivation through acid digestion and enzymatic treatment before being fermented by Saccharomyces cerevisiae (NRRLY-2034). The primary target of this research was to find out the ethanol from hydrolysate of the defatted biomass of N. oculata grown mixotrophically on SBAE and CO2 as carbon sources. For acid hydrolysis (AH), the highest carbohydrate yield 252.84 mg/g DW has been obtained with 5.0% (v/v) H2SO4 at 121 °C for 15 min for defatted biomass cultivated mixotrophically on sugarcane bagasse aqueous extract (SBAE) regarding 207.41 mg/g DW for defatted biomass cultivated autotrophically (control treatment). Whereas, the highest levels of reducing sugars has been obtained with 4.0% (v/v) H2SO4 157.47±1.60 mg/g DW for defatted biomass cultivated mixotrophically compared with 135.30 mg/g DW for the defatted control treatment. The combination of acid hydrolysis 2.0% (v/v) H2SO4 followed by enzymatic treatment (AEH) increased the carbohydrate yields to 268.53 mg/g DW for defatted biomass cultivated mixotrophically on SBAE regarding 177.73 mg/g DW for the defatted control treatment. However, the highest levels of reducing sugars have been obtained with 3.0% (v/v) H2SO4 followed by enzyme treatment that gave 232.39±1.77 for defatted biomass cultivated mixotrophically on SBAE and 150.75 mg/g DW for the defatted control treatment. The sugar composition of the polysaccharides showed that glucose was the principal polysaccharide sugar (60.7-62.49%) of N. oculata defatted biomass. Fermentation of the hydrolysates by Saccharomyces cerevisiae for the acid pretreated defatted biomass samples gave ethanol yield of 0.86 g/L (0.062 g/g sugar consumed) for control and 1.17 g/L (0.069 g/g sugar consumed) for SBAE mixotrophic. Whereas, the maximum ethanol yield of 6.17±0.47 g/L (0.26±0.11 g/g sugar consumed) has been obtained with samples from defatted biomass grown mixotrophically (SBAE mixotrophic) pretreated with acid coupled enzyme hydrolysis.
Collapse
Affiliation(s)
- Nashwa A H Fetyan
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | | | - Fatma M Ibrahim
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Yasser A Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| | - Mahmoud W Sadik
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
9
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|