1
|
Li J, Wan X, Wang H, Zhang Y, Ma Z, Yang W, Hu Y. Electrospun nanofibers electrostatically adsorb heterotrophic nitrifying and aerobic denitrifying bacteria to degrade nitrogen in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120199. [PMID: 38316072 DOI: 10.1016/j.jenvman.2024.120199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/13/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
Nanofibers were prepared by electrospinning a mixture of polycaprolactone and silica, and modified to improve the hydrophilicity and stability of the material and to degrade nitrogenous wastewater by adsorbing heterotrophic nitrifying aerobic denitrifying (Ochrobactrum anthropic). The immobilized bacteria showed highly efficient simultaneous nitrification-denitrification ability, which could convert nearly 90 % of the initial nitrogen into gaseous nitrogen under aerobic conditions, and the average TN removal rate reached 5.59 mg/L/h. The average ammonia oxidation rate of bacteria immobilized by modified nanofibers was 7.36 mg/L/h, compared with 6.3 mg/L/h for free bacteria and only 4.23 mg/L/h for unmodified nanofiber-immobilized bacteria. Kinetic studies showed that modified nanofiber-immobilized bacteria complied with first-order degradation kinetics, and the effects of extreme pH, temperature, and salinity on immobilized bacteria were significantly reduced, while the degradation rate of free bacteria produced larger fluctuations. In addition, the immobilized bacterial nanofibers were reused five times, and the degradation rate remained stable at more than 80 %. At the same time, the degradation rate can still reach 50 % after 6 months of storage at 4 °C. It also demonstrated good nitrogen removal in practical wastewater treatment.
Collapse
Affiliation(s)
- Jixiang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Xiaoru Wan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - HeTianai Wang
- College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Yanju Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Zilin Ma
- College of 2011, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China.
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China; College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing, 211816, PR China.
| |
Collapse
|
2
|
Qiao Z, Sheng Y, Wang G, Chen X, Liao F, Mao H, Zhang H, He J, Liu Y, Lin Y, Yang Y. Deterministic factors modulating assembly of groundwater microbial community in a nitrogen-contaminated and hydraulically-connected river-lake-floodplain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119210. [PMID: 37801950 DOI: 10.1016/j.jenvman.2023.119210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
3
|
Šaraba V, Milovanovic J, Nikodinovic-Runic J, Budin C, de Boer T, Ciric M. Brackish Groundwaters Contain Plastic- and Cellulose-Degrading Bacteria. MICROBIAL ECOLOGY 2023; 86:2747-2755. [PMID: 37535083 DOI: 10.1007/s00248-023-02278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
The selected brackish groundwater occurrences in the geotectonic regions of Inner Dinarides of western Serbia (Obrenovačka Banja) and Serbian crystalline core (Lomnički Kiseljak and Velika Vrbnica) were sampled for isolation and identification of plastic- and lignocellulose-degrading bacteria, as well as for the assessment of their enzymatic potential. The examined occurrences belong to the cold and warm (subthermal), weakly alkaline, neutral, and weakly acidic groundwater, and their genetic types are HCO3-Na + K and HCO3-Ca, Mg. The most abundant genera identified by next-generation 16S sequencing of cultivated groundwater samples belong to Aeromonas and Exiguobacterium. Of isolates screened on plastic and lignocellulosic substrates, 85.3% demonstrated growth and/or degrading activity on at least one tested substrate, with 27.8% isolates degrading plastic substrate Impranil® DLN-SD (SD), 1.9% plastic substrate bis(2-hydroxyethyl)terephthalate, and 5.6% carboxymethyl cellulose (CMC). Isolates degrading SD that were identified by 16S rDNA sequencing belonged to genera Stenotrophomonas, Flavobacterium, Pantoea, Enterobacter, Pseudomonas, Serratia, Acinetobacter, and Proteus, while isolates degrading CMC belonged to genera Rhizobium and Shewanella. All investigated brackish groundwaters harbor bacteria with potential in degradation of plastics or cellulose. Taking into account that microplastics contamination of groundwater resources is becoming a significant problem, the finding of plastic-degrading bacteria may have potential in bioremediation treatments of polluted groundwater. Subterranean ecosystems, which are largely untapped resources of biotechnologically relevant enzymes, are not traditionally considered the environment of choice for screening for plastic- and cellulose-degrading bacteria and therefore deserve a special attention from this aspect.
Collapse
Affiliation(s)
- Vladimir Šaraba
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Milovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | - Milica Ciric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
4
|
Zheng F, Zhang T, Yin S, Qin G, Chen J, Zhang J, Zhao D, Leng X, An S, Xia L. Comparison and interpretation of freshwater bacterial structure and interactions with organic to nutrient imbalances in restored wetlands. Front Microbiol 2022; 13:946537. [PMID: 36212857 PMCID: PMC9533089 DOI: 10.3389/fmicb.2022.946537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023] Open
Abstract
Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Tiange Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ge Qin
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Chen
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Jinghua Zhang
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Dehua Zhao
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Leng
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| | - Shuqing An
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
- Nanjing University Ecology Research Institute of Changshu, Changshu, Jiangsu, China
| | - Lu Xia
- School of Life Sciences, Institute of Wetland Ecology, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Ji L, Zhang L, Wang Z, Zhu X, Ning K. High biodiversity and distinct assembly patterns of microbial communities in groundwater compared with surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155345. [PMID: 35460778 DOI: 10.1016/j.scitotenv.2022.155345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The differences in bacterial community assembly mechanism between surface water and groundwater, as well as the driving factors of environmental factors, are still unknown. Here we aimed to answer these questions by analyzing microbial community samples from surface water and groundwater. We observed a strong connection between microbial communities in surface water and groundwater and several human pathogens are shared between surface water and groundwater; however, the richness and diversity of groundwater microbial communities were greater than those of surface water, regardless of the season. Additionally, bacterial community compositions of surface water and groundwater differed significantly between seasons. Most importantly, the groundwater community exhibited a highly deterministic assembly process (56% contributed by deterministic process, with neutral community model R2 = 0.277) compared with surface water (51% contributed by deterministic process, with R2 = 0.526). This study provides a deep understanding of the effects of environmental factors on surface water and groundwater microbial communities, to better protect water resources.
Collapse
Affiliation(s)
- Lei Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| | - Xue Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
6
|
Wang X, Li W, Cheng A, Shen T, Xiao Y, Zhu M, Pan X, Yu L. Community characteristics of autotrophic CO 2-fixing bacteria in karst wetland groundwaters with different nitrogen levels. Front Microbiol 2022; 13:949208. [PMID: 36046022 PMCID: PMC9421164 DOI: 10.3389/fmicb.2022.949208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Karst wetlands are important in the global carbon and nitrogen cycles as well as in security of water resources. Huixian wetland (Guilin) is the largest natural karst wetland in China. In recent years, groundwater nitrogen pollution has increasingly affected the wetland ecosystem integrity due to anthropogenic activities. In this study, it was hypothesized that autotrophic microbial diversity is impacted with the advent of pollution, adversely affecting autotrophs in the carbon and nitrogen cycles. Autotrophic microbes have important roles in abating groundwater nitrogen pollution. Thus, it is of great significance to study the characteristics of autotrophic bacterial communities and their responses to environmental parameters in nitrogen-polluted karst groundwaters. The abundances of the Calvin-Benson cycle functional genes cbbL and cbbM as well as the autotrophic CO2-fixing bacterial communities were characterized in the karst groundwater samples with different levels of nitrogen pollution. The cbbM gene was generally more abundant than the cbbL gene in the groundwater samples. The cbbL gene abundance was significantly positively correlated with dissolved inorganic nitrogen (DIN) concentration (P < 0.01). In the autotrophic CO2-fixing bacterial communities, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria of the phylum Proteobacteria were predominant. At the genus level, Rubrivivax and Methylibium were the dominant cbbL gene containing genera, while Halothiobacillus and Endothiovibrio were the dominant genera for the cbbM gene. The abundance of autotrophic CO2-fixing bacterial communities increased but their diversity decreased with the inflow of nitrogen into the karst groundwater system. The community structure of autotrophic CO2-fixing bacteria in the groundwaters was also significantly affected by environmental factors such as the carbonic anhydrase (CA) activity, dissolved inorganic carbon (DIC) concentration, temperature, and oxidation-reduction potential (ORP). Nitrogen inflow significantly changed the characteristics of autotrophic CO2-fixing bacterial communities in the karst groundwaters. Some key genera such as Nitrosospira and Thiobacillus were clearly abundant in the karst groundwaters with high nitrogen levels. Their respective roles in nitrification and denitrification impact nitrogen removal in this ecosystem. The findings in this study provide an important reference for biological abatement of nitrogen pollution in the karst groundwater system.
Collapse
Affiliation(s)
- Xiayu Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Aoqi Cheng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Taiming Shen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Yutian Xiao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Pan
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| |
Collapse
|
7
|
Hu X, Su J, Ali A, Wang Z, Wu Z. Heterotrophic nitrification and biomineralization potential of Pseudomonas sp. HXF1 for the simultaneous removal of ammonia nitrogen and fluoride from groundwater. BIORESOURCE TECHNOLOGY 2021; 323:124608. [PMID: 33421833 DOI: 10.1016/j.biortech.2020.124608] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Pseudomonas sp. HXF1, a strain capable of heterotrophic nitrification, aerobic denitrification (HNAD), and biomineralization was identified and employed for the simultaneous removal of ammonia nitrogen (NH4+-N) and fluoride (F-). It removed 99.2% of NH4+-N without accumulation of nitrous nitrogen (NO2--N) and nitrate nitrogen (NO3--N), while removed 87.3% of F-. Response surface methodology (RSM) was used to study the best removal conditions for NH4+-N and F-. The results of nitrogen balance experiments with NH4Cl, NaNO2, and NaNO3 as single nitrogen sources and amplification experiments of denitrification genes proved that the bacterial strains may remove NH4+-N through HNAD. The experimental results of Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometer (XRD) indicated that the way of F- removal may be adsorption and co-precipitation. The results demonstrated that the strain HXF1 has great potential in the biological denitrification and F- removal of groundwater.
Collapse
Affiliation(s)
- Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|