1
|
Wang Y, Huang C, Liu G, Zhao Z, Li H, Sun Y. Assessing spatiotemporal risks of nonpoint source pollution via soil erosion: a coastal case in the Yellow River Delta, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34569-34587. [PMID: 38709409 DOI: 10.1007/s11356-024-33523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Nonpoint source pollution (NPSP) has always been the dominant threat to regional waters. Based on empirical models of the revised universal soil loss equation and the phosphorus index, an NPSP risk assessment model denoted as SL-NPSRI was developed. The surface soil pollutant loss was estimated by simulating the rain-runoff topographic process, and the influence of path attenuation was quantified. A case study in the Yellow River Delta and corresponding field surveys of soil pollutants and water quality showed that the established model can be applied to evaluate the spatial heterogeneity of NPSP. NPSP usually occurs during high-intensity rainfall periods and in larger estuaries. Summer rainfall increased pollutant transport into the sea from late July to mid-August and caused estuarine dilution. Higher NPSP risks often correspond to coastal areas with lower vegetation coverage, higher soil erodibility, and higher soil pollutant concentrations. Agricultural NPSP originating from cropland significantly increase the pollutant fluxes. Therefore, area-specific land use management and vegetation coverage improvement, and temporal-specific strategies can be explored for NPSP control during source-transport hydrological processes. This research provides a novel insight for coastal NPSP simulations by comprehensively analyzing the soil erosion process and its associated pollutant loss effects, which can be useful for targeted spatiotemporal solutions.
Collapse
Affiliation(s)
- Youxiao Wang
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, 250101, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chong Huang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gaohuan Liu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Zhonghe Zhao
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - He Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingjun Sun
- School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
2
|
Wang R, Liu L, Tao Z, Wan B, Wang Y, Tang X, Li Y, Li X. Effect of urbanization and urban forests on water quality improvement in the Yangtze River Delta: A case study in Hangzhou, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119980. [PMID: 38176386 DOI: 10.1016/j.jenvman.2023.119980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
In the context of rapid global urbanization, the sustainable development of ecosystems should be considered. Accordingly, the Planetary Boundaries theory posits that reducing the amount of nitrogen and phosphorus pollutants entering bodies of water is necessary as excess levels may harm the aquatic environment and reduce in water quality. Thus, based on the long-term monitoring data of representative urban rivers in the Yangtze River Delta region, we evaluated the nitrogen and phosphorus pollution of water bodies in different urbanization stages and further quantified the effect of urban forests on water quality improvement. The results showed that, with the continuous progression of urbanization, the proportion of impervious surface area increased, along with the levels of nitrogen and phosphorus pollution in water bodies. The critical period of water quality deterioration in urban rivers occurred during the medium urbanization level when the proportion of impervious surface area reached 55-65 %, and the probability of an abrupt increase in total nitrogen (TN) and total phosphorus (TP) concentration exceeded 95 %. However, increasing the area of urban forests during this period reduced TN pollution by 36.64 % and TP pollution by 49.03 %. The results of this study support the expansion of urban forests during the medium urbanization stage to improve water quality. Furthermore, our results provide a reference and theoretical basis for urban forest construction as a key aspect of the sustainable development of the urban ecosystem in the Yangtze River Delta and similar regions around world.
Collapse
Affiliation(s)
- Rongjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, PR China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Lijuan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, PR China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhizhong Tao
- Anji County Bureau of Water Resources, Huzhou, 313300, PR China
| | - Bing Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, PR China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Yuanyuan Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, PR China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Xiangyu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, PR China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, PR China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Xiaoyu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, PR China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, PR China.
| |
Collapse
|
3
|
Hu Y, Zhang J, Wang Y, Hu S. Distinct mechanisms shape prokaryotic community assembly across different land-use intensification. WATER RESEARCH 2023; 245:120601. [PMID: 37708774 DOI: 10.1016/j.watres.2023.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Changes in land-use intensity can have a far-reaching impact on river water quality and prokaryotic community composition. While research has been conducted to investigate the assembly mechanism of prokaryotic communities, the contributions of neutral theory and niche theory to prokaryotic community assembly under different land-use intensities remain unknown. In this study, a total of 251 sampling sites were set up in the Yangtze River basin to explore the assembly mechanism under different land-use intensities. Briefly, a "source" landscape can generate pollution, whereas a "sink" landscape can prevent pollution. Firstly, our result showed that higher land-use intensity might disturb the balance between the "source" and "sink" landscape patterns, resulting in water quality deterioration. Then the prokaryotic community assembly was classified into five ecological processes, namely homogeneous selection, homogenizing dispersal, undominated processes, dispersal limitation, and variable selection. The higher land-use intensity was found to strengthen the homogeneous selection, leading to the homogenization of the community at the whole basin scale. Finally, our findings demonstrated that the Yangtze River Basin's prokaryotic community displayed a distance-decay pattern when land-use intensity was low, with a greater contribution from neutral theory to its assembly. On the other hand, with a higher land-use intensity, the degradation of the aquatic environment increased the impacts of environmental filtering on the prokaryotic community, and niche theory played a stronger role in its assembly. Our findings show how land-use intensity influence the formation of prokaryotic communities, which will be an invaluable guide for managing land use and understanding the prokaryotic community assembly mechanisms in the Yangtze River Basin.
Collapse
Affiliation(s)
- Yuxin Hu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China
| | - Yingcai Wang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| | - Sheng Hu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan 430010, Hubei, China.
| |
Collapse
|
4
|
Al-Solaimani SG, Abohassan RA, Alamri DA, Yang X, Rinklebe J, Shaheen SM. Assessing the risk of toxic metals contamination and phytoremediation potential of mangrove in three coastal sites along the Red Sea. MARINE POLLUTION BULLETIN 2022; 176:113412. [PMID: 35168071 DOI: 10.1016/j.marpolbul.2022.113412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/26/2021] [Accepted: 01/29/2022] [Indexed: 05/09/2023]
Abstract
Assessing toxic metals (TMs) contamination and phytoremediation potentiality in coastal mangrove lagoons is needed for applying sustainable management of this ecosystem. Consequently, here we determined the pseudo-total content of TMs in the sediments and mangrove plants (leaves, stems, aerial roots, and fine roots) collected from Al-Shuaiba, Yanbu, and Jeddah lagoons, along the coast of Red Sea. The contamination degree was assessed using different indices and the potentiality of mangroves for TMs phytoremediation was determined. The average total metals content (mg kg-1) in the sediments ranged from 1806 to 9580 for Fe, 65 to 195 for Mn, 3.9 to 25.9 for Cu, 5.5 to 16.4 for Zn, 0.09 to 0.42 for Cd, 8.9 to 20.9 for Cr, 32.8 to 37.9 for Ni, and from 0.69 to 6.7 for Pb. The sediments of Yanbu site contained the highest content of all metals (except for Cu), while Al-Shuaiba sediments contained the lowest values. The contamination factor (CF) showed that the sediments of Yanbu and Jeddah suffer from high and moderate contamination degree of Cd. These sites suffer from moderate grade of Ni contamination. The CF values of Fe, Mn, Cr, Cu, and Zn in the three sites were lower than unity, which show low contamination degree. Iron, Cr, Cu, Ni, Pb, and Zn were concentrated in the fine roots, while Cd was concentrated in the stems. Mangrove plants at Yanbu site contained significantly higher content of all metals than the grown plants in Jeddah and Al-Shuaiba sites, which can be explained by the high metal content in the sediments and the anthropogenic metal sources such as the petrochemical industries, and the industrial and municipal wastewater discharged into this site. Sediment-to-plant transfer coefficients values were higher than unity, which indicate that the mangrove plants have the potential to accumulate the metals. The results highlight a potential risk at Yanbu and Jeddah sites and may help for applying sustainable trials for phyto-management of these lagoons.
Collapse
Affiliation(s)
- Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia.
| | - Refaat A Abohassan
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Dhafer Ali Alamri
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Xing Yang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea
| | - Sabry M Shaheen
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
5
|
Mosa A, Selim EMM, El-Kadi SM, Khedr AA, Elnaggar AA, Hefny WA, Abdelhamid AS, El Kenawy AM, El-Naggar A, Wang H, Shaheen SM. Ecotoxicological assessment of toxic elements contamination in mangrove ecosystem along the Red Sea coast, Egypt. MARINE POLLUTION BULLETIN 2022; 176:113446. [PMID: 35245874 DOI: 10.1016/j.marpolbul.2022.113446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Identifying biochemical aspects of the potentially toxic elements (PTEs) is of particular concern in mangrove ecosystems, Avicennia marina (Forssk.) Vierh., due to their importance as natural buffers in coastal areas. Nonetheless, the microbial community dynamics and potential scavenging responses of mangrove ecosystems to the phytotoxicity of PTEs remain questionable. This study assesses the ecological risk benchmarks of some PTEs, including aluminum (Al), boron (B), barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn), and their microbial responses in the bottom sediments of mangrove ecosystems along Egypt's Red Sea coast. In particular, we assessed the role of microbial metabolites in biochemical cycling of nutrients and scavenging against phytotoxicity hazards. We quantified a spectrum of ecological risk assessment indices, which suggested elevated levels of PTEs in sediment, particularly Cr, Hg, and Pb. Canonical correspondence analysis and generalized linear mixed effects models indicate that the spatial biodiversity of microbial taxa is impacted significantly by the physicochemical characteristics of sediments and concentrations of PTEs. Results demonstrate that the microbial communities and their metabolites exert a significant influence on organic matter (OM) decomposition and the biochemical cycling of phytoavailable nutrients including nitrogen (N), phosphorus (P), and potassium (K). Spatially, nitrogenase activities were higher (411.5 μmoL h-1 mL-1) in the southern sites of the Red Sea coast relative to the northern locations (93.8 μmoL h-1 mL-1). In contrast, higher concentrations of phytohormones, including indole-3-acetic acid (IAA) (61.5 mg mL-1) and gibberellins (534.2 mg mL-1), were more evident in northern sites. Siderophores correlated positively with Fe concentration in sediments and averaged 307.4 mg mL-1. Overall, these findings provide insights into the biochemical signals of PTEs contamination in hostile environments, contributing to a better understanding of the future prospects of PTEs bioremediation in contaminated coastal environments.
Collapse
Affiliation(s)
- Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt.
| | | | - Sherif M El-Kadi
- Agricultural Microbiology Department, Faculty of Agriculture, Damietta University, 34517, Egypt
| | - Abdelhamid A Khedr
- Botany and Microbiology Department, Faculty of Science, Damietta University, 34517, Egypt
| | - Abdelhamid A Elnaggar
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Wael A Hefny
- Nature Conservation Sector, Egyptian Environmental Affairs Agency (EEAA), Egypt
| | - Ahmad S Abdelhamid
- Soils Department, Faculty of Agriculture, Damietta University, 34517, Egypt
| | | | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China; Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Sabry M Shaheen
- University of Wuppertal, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
6
|
Optimization of Land Use Based on the Source and Sink Landscape of Ecosystem Services: A Case Study of Fengdu County in the Three Gorges Reservoir Area, China. LAND 2021. [DOI: 10.3390/land10111242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Promoting the preservation and appreciation of ecosystem services is an important value guide for land use optimization. In this research, Fengdu County in the Three Gorges Reservoir Area was selected as the focus of a case study. From the perspective of the source and sink landscape of ecosystem services, a MOP model and FLUS model were used to optimize the areas of various land use types and the spatial configurations of those land use types in the study area in 2035 under a strict ecological constraint (SEC) scenario, a moderate ecological constraint (MEC) scenario, and a relaxed ecological constraint (REC) scenario. We also superimposed and adjusted the results of land use optimization under the three ecological constraint scenarios, and obtained land use regionalization results that integrated multiple scenarios. The results indicated that (1) there were large differences in the areas and spatial distributions of the source and sink landscapes under the three scenarios. Under the SEC scenario, the important source landscapes (ISLs), common source landscapes (CSLs), and sink landscapes (SLs) areas covered 1676.62 km2, 1190.43 km2, and 33.81 km2, respectively. A large area of the CSLs and a small area of the SLs were transformed into ISLs area, and the degree of fragmentation of the landscape was low. Under the MEC scenario, the ISLs, CSLs, and SLs areas covered 1609.22 km2, 1241.60 km2, and 49.74 km2, respectively. The development of the source landscapes and sink landscapes was similar, and the degree of fragmentation was moderate. Under the REC scenario, the ISLs, CSLs, and SLs areas covered 1603.96 km2, 1243.32 km2, and 53.58 km2, respectively. A large area of CSLs was transformed into SLs area, and the degree of fragmentation was high. (2) Fengdu County was divided into seven types of areas: ecological conservation area; agricultural production area; construction optimization area; construction-ecological area; ecological-agricultural area; agricultural-construction area; and integrated development area. The results of this study can provide references for the territorial spatial planning and management of ecological barrier zones.
Collapse
|
7
|
Nguyen KA, Chen W. Letter to the editor regarding Bhattacharya et al. (2020). Sub-basin prioritization for assessment of soil erosion susceptibility in Kangsabati, a plateau basin: A comparison between MCDM and SWAT models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148424. [PMID: 34144783 DOI: 10.1016/j.scitotenv.2021.148424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Kieu Anh Nguyen
- Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Walter Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.
| |
Collapse
|
8
|
Wang Y, Liu G, Zhao Z, Wu C, Yu B. Using soil erosion to locate nonpoint source pollution risks in coastal zones: A case study in the Yellow River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117117. [PMID: 33872937 DOI: 10.1016/j.envpol.2021.117117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Soil erosion contributes greatly to nonpoint source pollution (NSP). We built a coastal NSP risk calculation method (CNSPRI) based on the Revised Universal Soil Loss Equation (RUSLE) and geospatial methods. In studies on the formation and transport of coastal NSP, we analysed the pollution impacts on the sea by dividing subbasins into the sea and monitoring the pollutant flux. In this paper, a case study in the Yellow River Delta showed that the CNSPRI could better predict the total nitrogen (TN) and total phosphorus (TP) NSP risks. The value of the soil erodibility factor (K) was 0.0377 t h·MJ-1·mm-1, indicating higher soil erodibility levels, and presented an increased trend from the west to the east coast. The NSP risk also showed an increased trend from west to east, and the worst status was found near the Guangli River of the south-eastern region. The contributions of the seven influencing factors to CNSPRI presented an order of vegetation cover > rainfall erosivity > soil content > soil erodibility > flow > flow path > slope. The different roles of source and sink landscapes influenced the pollutant outputs on a subbasin scale. Arable land and saline-alkali land were the two land-use types with the greatest NSP risks. Therefore, in coastal zones, to reduce NSP output risks, we should pay more attention to the spatial distribution of vegetation cover, increase its interception effect on soil loss, and prioritize the improvement of saline-alkali land to reduce the amount of bare land.
Collapse
Affiliation(s)
- Youxiao Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Gaohuan Liu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Zhonghe Zhao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunsheng Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bowei Yu
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
9
|
Wang R, Wang Q, Dong L, Zhang J. Cleaner agricultural production in drinking-water source areas for the control of non-point source pollution in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112096. [PMID: 33582473 DOI: 10.1016/j.jenvman.2021.112096] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 05/20/2023]
Abstract
With continuous population growth and acceleration of urbanization in China, environmental problems in drinking-water source areas have become increasingly prominent. In some places, domestic wastewater and aquaculture sewage are directly discharged into water bodies without any treatment. Also, large amounts of domestic garbage and aquaculture waste are often randomly stacked, seriously polluting the surrounding groundwater and surface water and deteriorating the water quality. Notably, some agricultural production activities can also cause non-point source pollution, resulting from eutrophication of water bodies. In some instances, these activities can lead to nitrogen losses of 0.7%-83.9% and phosphorus losses of 0.6%-82.8%. In view of this situation, the implementation of cleaner agricultural production is of great significance for protecting the environment in drinking-water source areas and maintaining drinking-water safety. Specific practicable measures include formula fertilization through soil testing, integrated pest management, and water-saving irrigation technology. For the livestock- and poultry-breeding industry, it is necessary for large-scale farms to construct excreta discharge treatment facilities, carry out harmless treatment and resource utilization of organic wastes, establish rural biogas septic tanks, and make use of domestic-sewage and livestock-breeding wastewaters. Also, fixed garbage-dumping sites should be built in rural water-source areas, and a unified garbage-disposal station set up to reduce the pollution discharge of domestic garbage. Moreover, it is crucial to strictly control the development and utilization of hillsides in the middle and upper reaches of the drinking-water source area, as well as strengthen the restoration of vegetation and the construction of soil and water conservation forests in these areas.
Collapse
Affiliation(s)
- Rongjia Wang
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Qingbing Wang
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Linshui Dong
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Jianfeng Zhang
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| |
Collapse
|
10
|
Qu H, Ma C, Xiao J, Li X, Wang S, Chen G. Co-planting of Quercus nuttallii, Quercus pagoda with Solanum nigrum enhanced their phytoremediation potential to multi-metal contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1104-1112. [PMID: 33501836 DOI: 10.1080/15226514.2021.1878105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To screen the efficient tree-herb co-planting patterns to remediate the heavy metal polluted soil, a greenhouse experiment was conducted for 150 days to examine the plant growth and metals accumulation across three co-planting patterns, including Solanum nigrum (S) co-planted with Quercus nuttallii (NS) or Quecrus pagoda (PS), and those three species are co-planted together (NPS). Results showed that the NPS pattern slightly decreased the tree biomass, while NS and PS treatments improved the plant growth (1.51-10.68%). It is worth noting that the NS treatment significantly (p < 0.05) increased photosynthetic pigment content (82.61-113.93%), net CO2 assimilation (21.44%), and the uptake of Cd (44.58%) in Q. nuttallii; the PS treatment significantly (p < 0.05) increased the net CO2 assimilation (8.61%) and the uptake of Cd (42.23%), Zn (31.18%) in Q. pagoda; and the uptake of Cd and Zn in the NPS co-planting treatment were only slightly increased. For S. nigrum, the photosynthetic pigment content was elevated and the metal accumulation in itself also maintained the relative stable in all the co-planting treatments. Thus, co-planting of Quercus with S. nigrum was a promising way to remediate heavily polluted soil by heavy metals. Novelty statement: Co-planting with multiple plant species, as a novel strategy, has great value for the remediation of heavy metal contaminated soil. The paper aimed to explore the suitable co-planting pattern of Quercus, arbor trees which showed phytoremediation potential, co-planted with Cd hyperaccumulator, Solanum nigrum. The result suggested the co-planting with S. nigrum enhanced the plant growth, photosynthesis, and metals extraction of Q. nuttallii and Q. pagoda. Co-planting also improved ecological adaptation of S. nigrum via elevating pigment content. Thus, co-planting of Quercus with S. nigrum was a promising way to remediate polluted soil.
Collapse
Affiliation(s)
- Haojie Qu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaogang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Shufeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|