1
|
Lazo P, Bekteshi L, Kane SS, Qarri F. The impact of toxic elements on the quality of surface soil in Albania. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:652. [PMID: 40358823 DOI: 10.1007/s10661-025-14073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Due to the toxicity and persistence of trace chemical elements, soil contamination has become a crucial issue for its sensitive impact on biodiversity and human health. It is of interest to assess and understand the distribution and sources of potentially toxic elements in the soil, particularly in regions with high topographical and geological diversity. This research represents the first attempt to create a consistent spatial database of the topsoil quality across Albania. Seventy-five topsoil samples were collected at a density of one site every 380 km2 and analyzed for 13 chemical elements. The content of potentially toxic elements has been assessed and compared with the neighboring and European regions, as well as the recommended threshold and guideline values. Concentration and geochemically normalized data were used to distinguish between the natural and anthropogenic origins of elements, determine their background levels, and map out the contaminated areas. The content of elements from natural sources remained essentially constant and revealed small variation, while those of anthropogenic and geogenic origins exhibited relatively high variability. Elevated content and significant variation were observed for Cr, Ni, and Co, with an increasing trend, particularly in the eastern part. The geochemical normalization of the data yielded significant insights into the natural and anthropogenic sources and the baseline levels of trace elements in this study area. Factor analysis indicated notable differences between the structure of the concentration and normalized data and identified the same outliers, primarily linked to geological and human-related sources.
Collapse
Affiliation(s)
- Pranvera Lazo
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Tirana, Albania.
| | - Lirim Bekteshi
- Department of Biochemistry, University of Elbasan, Elbasan, Albania
| | - Sonila Shehu Kane
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Tirana, Albania.
| | - Flora Qarri
- Department of Chemistry, Faculty of Natural and Technical Sciences, University of Vlore, Vlore, Albania
| |
Collapse
|
2
|
Golia EE, Barbieri E, Papadimou SG, Alexiadis D. Energy, Aromatic, and Medicinal Plants' Potential and Prospects for the Remediation of Potentially Toxic Element-Contaminated Agricultural Soils: A Critical Meta-Analysis. TOXICS 2024; 12:914. [PMID: 39771129 PMCID: PMC11728623 DOI: 10.3390/toxics12120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
A critical meta-analysis of the past decade's investigations was carried out with the aim of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE) contaminated soils were selected since these contaminants are considered hazardous and have long-term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value products seem to be affected by PTEs' existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As accumulation in different parts of plant species has been investigated using proper indices. Aromatic plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was often used, allowing for the aboveground part to be almost completely free of metallic pollutants. Using plants for remediation was proven to be advantageous within a circular economy model. Such a process is a promising solution, both economically and environmentally, since it provides a useful tool for keeping environmental balance and producing safe goods.
Collapse
Affiliation(s)
- Evangelia E. Golia
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
| | - Edoardo Barbieri
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
- Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Sotiria G. Papadimou
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
- School of Agricultural Sciences, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Dimitrios Alexiadis
- Soil Science Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece (S.G.P.); (D.A.)
| |
Collapse
|
3
|
Nafees M, Ali MA, Qiu L, Yin Y, Xu M, Wang G, Ali S, Guo H. Mechanistic approach of tannery wastewater and sulfadiazine mutual toxicity in wheat (Triticum aestivum L.) and mitigation through exogenous application of gallic acid. CHEMOSPHERE 2024; 358:142203. [PMID: 38697571 DOI: 10.1016/j.chemosphere.2024.142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Excessive release of chromium (Cr) from the tanning industry and antibiotics from livestock caused severe hazards to humans. Gallic acid (GA 10 mM) alleviated alone/combined SDZ 30 mg kg-1 and TWW 40, 60, and 100% stress in wheat. GA (10 mM) decreased the TSP 12 and 13%, TFAA 8 and 10%, TSS 14 and 16%, RS 18 and 16%, and NRS 11 and 9% in shoots and grains under SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) declined the MDA 20 and 31, EL 13 and 36%, H2O2 17 and 15%, O2•- 10 and 11% in leaves and roots, under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) improved the POD 106 and 30%, SOD 145 and 31%, CAT 78, and 35%, APX 100 and 25% in leaves and roots under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar application. Considerably GA (10 mM) reduced total Cr 18, CrIII 20, and CrVI 50% in roots and shoots 19, 41, and 48%, and grains 15, 27, and 29% respectively, under combined SDZ + TWW (30 mg kg-1+100%) stress, compared without foliar. Overall, GA boosted the wheat growth, physiology, and defence system by inhibiting the combined SDZ + Cr toxicity.
Collapse
Affiliation(s)
- Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Linlin Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guobing Wang
- Institute of Geography, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, Jiangsu, 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000, Quanzhou, China.
| |
Collapse
|
4
|
Al-Huqail AA, Alghanem SMS, Abbas ZK, Al Aboud NM, Masood N, Irshad MA, Abbas T, Abeed AHA, Darwish DBE. Evaluation of nanoceria on cadmium uptake in Triticum aestivum (L.) and its implications for dietary health risk. CHEMOSPHERE 2023; 341:140115. [PMID: 37689157 DOI: 10.1016/j.chemosphere.2023.140115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
In recent times, significant attention has been directed toward the synthesis and application of nanoparticles (NPs) in agriculture sector. In current study, nanoceria (CeO2 NPs) synthesized by green method were employed to address cadmium (Cd) accumulation in wheat (Triticum aestivum L.) cultivated in field with excess Cd. The application of CeO2 NPs was carried out through foliar spraying, performed twice during the growth of T. aestivum. Four levels of CeO2 NPs were used: T0, T1, T2, and T3 as 0, 50, 75, and 100 mgL-1, respectively. Results highlighted the positive effects of CeO2 NPs on various growth parameters, including plant height, spike length, photosynthetic related attributes, as well as straw and grain of grains in comparison to T1 (control group). Furthermore, CeO2 NPs led to a reduction in oxidative stress in the leaves and enhanced in enzyme activities in comparison to T1. Notably, Cd concentrations in straw, roots, and grains exhibited a decline following the treatment with CeO2 NPs, in contrast to the control group. In terms of health implications, the calculated health risk index associated with dietary consumption of grains by adults remained below the defined threshold with supply of nanoparticles. Foliar application of CeO2 NPs proved to be an effective approach in reducing cadmium content in wheat grains. This reduction holds significant potential for minimizing the risk of cadmium exposure to human health through the food chain. Employing the green synthesis method amplifies the potential for extensive production and a wide array of environmental applications for CeO2 NPs. This dual capacity makes them proficient in tackling environmental stresses while concurrently mitigating adverse ecological effects.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nora M Al Aboud
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasir Masood
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Tarlai Kalan Chak, Shehzad Park Road, Islamabad, 45550, Pakistan.
| | | | - Tahir Abbas
- Department of Environmental Sciences, University of Jhang, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Doaa Bahaa Eldin Darwish
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia; Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
5
|
Romanowska-Duda Z, Piotrowski K, Szufa S, Sklodowska M, Naliwajski M, Emmanouil C, Kungolos A, Zorpas AA. Valorization of Spirodela polyrrhiza biomass for the production of biofuels for distributed energy. Sci Rep 2023; 13:16533. [PMID: 37783756 PMCID: PMC10545719 DOI: 10.1038/s41598-023-43576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
Considering the main objectives of a circular economy, Lemnaceae plants have great potential for different types of techniques to valorize their biomass for use in biofuel production. For this reason, scientific interest in this group of plants has increased in recent years. The aim of this study was to evaluate the effects of salt stress on the growth and development of S. polyrrhiza and the valorization of biomass for biofuel and energy production in a circular economy. Plants were grown in a variety of culture media, including standard 'Z' medium, tap water, 1% digestate from a biogas plant in Piaszczyna (54° 01' 21″ N, 17° 10' 19″ E), Poland) and supplemented with different concentrations of NaCl (from 25 to 100 mM). Plants were cultured under phytotron conditions at 24 °C. After 10 days of culture, plant growth, fresh and dry biomass, as well as physio-chemical parameters such as chlorophyll content index, gas exchange parameters (net photosynthesis, transpiration, stomatal conductance and intercellular CO2 concentration), chlorophyll fluorescence measurements were analyzed. After 10 days of the experiment, the percentage starch content of Spirodela shoot segments was determined. S. polyrrhiza was shown to have a high starch storage capacity under certain unfavorable growth conditions, such as salt stress and nutrient deficiency. In the W2 (50 mM NaCl) series, compared to the control (Control2), starch levels were 76% higher in shoots and 30% lower in roots. The analysis of the individual growth and development parameters of S. polyrrhiza plants in the experiment carried out indicates new possibilities for the use of this group of plants in biofuel and bioethanol production.
Collapse
Affiliation(s)
- Z Romanowska-Duda
- Department of Plant Ecophysiology, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland.
| | - K Piotrowski
- Department of Plant Ecophysiology, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland
| | - S Szufa
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland
| | - M Sklodowska
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland
| | - M Naliwajski
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha Str. 12/16, 92-237, Lodz, Poland
| | - C Emmanouil
- Department of Planning and Regional Development, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Kungolos
- Civil Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A A Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, Latsia, 2231, Nicosia, Cyprus
| |
Collapse
|
6
|
Cheng J, Zhang S, Fang C, Ma L, Duan J, Fang X, Li R. Removal of Heavy Metal Ions from Aqueous Solution Using Biotransformed Lignite. Molecules 2023; 28:5031. [PMID: 37446692 DOI: 10.3390/molecules28135031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Heavy metal pollution caused by industrial wastewater such as mining and metallurgical wastewater is a major global concern. Therefore, this study used modified lignite as a low-cost adsorbent for heavy metal ions. Pingzhuang lignite was dissolved and modified using Fusarium lignite B3 to prepare a biotransformed-lignite adsorbent (BLA). The O, H, and N contents of the BLA increased after transformation, and the specific surface area increased from 1.81 to 5.66 m2·g-1. Various adsorption properties were investigated using an aqueous solution of Cu(Ⅱ). The kinetic and isothermal data were well-fitted by pseudo-second-order and Langmuir models, respectively. The Langmuir model showed that the theoretical Cu(II) adsorption capacity was 71.47 mg·g-1. Moreover, large particles and a neutral pH were favorable for the adsorption of heavy metal ions. The adsorption capacities of raw lignite and BLA were compared for various ions. Microbial transformation greatly improved the adsorption capacity, and the BLA had good adsorption and passivation effects with Cu(II), Mn(II), Cd(II), and Hg(II). Investigation of the structural properties showed that the porosity and specific surface area increased after biotransformation, and there were more active groups such as -COOH, Ar-OH, and R-OH, which were involved in the adsorption performance.
Collapse
Affiliation(s)
- Jianguo Cheng
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Baotou 014010, China
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Shanfei Zhang
- Shandong Shengli Bioengineering Co., Ltd., Jining 272000, China
| | - Chen Fang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Litong Ma
- Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-Coal Chemical Industry, Baotou 014010, China
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Jianguo Duan
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xu Fang
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rihong Li
- Inner Mongolia Tongwei High Pure Crystal Silicon Co., Ltd., Baotou 014010, China
| |
Collapse
|
7
|
Chen F, Li Y, Irshad MA, Hussain A, Nawaz R, Qayyum MF, Ma J, Zia-Ur-Rehman M, Rizwan M, Ali S. Effect of titanium dioxide nanoparticles and co-composted biochar on growth and Cd uptake by wheat plants: A field study. ENVIRONMENTAL RESEARCH 2023; 231:116057. [PMID: 37149025 DOI: 10.1016/j.envres.2023.116057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) is a common toxic trace element found in agricultural soils which is due to anthropogenic activities. Cadmium posed a significant risk to humans all around the world due to its cancer-causing ability. The current study demonstrated the effects of soil-applied biochar (BC) and foliar-applied titanium dioxide nanoparticles (TiO2 NPs) (at a rate of 0.5% and 75 mg/L respectively) alone or in combination on growth and Cd accumulation in wheat plants under field experiment. Soil applied BC and foliar TiO2 NPs, as well as BC coupled with TiO2 NPs, reduced Cd contents in grains by 32%, 47%, and 79%, than control respectively. The usage of NPs and BC boosted the plant height as well as chlorophyll contents by lowering oxidative injury and changing antioxidant enzyme activities than control plants. The combined use of NPs and BC prevented excess Cd accumulation in grains over the critical level (0.2 mg/kg) for cereals. The health risk index (HRI) due to Cd was reduced by 79% by co-composted BC + TiO2 NPs treatment than control. Although, HRI was lower than one for all treatments but this may exceed the limit if grains obtained from such field consumed over long periods. In conclusion, TiO2 NPs and BC amendments can be implemented in fields across the globe where excess Cd is present soils. Additional studies on the use of such approaches in more precise experimental settings are needed in order to address this environmental problem at larger scale.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Yuhang Li
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan; Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Afzal Hussain
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Rab Nawaz
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University Multan, 60800, Pakistan
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
8
|
Irshad MA, Rehman MZU, Anwar-Ul-Haq M, Rizwan M, Nawaz R, Shakoor MB, Wijaya L, Alyemeni MN, Ahmad P, Ali S. Effect of green and chemically synthesized titanium dioxide nanoparticles on cadmium accumulation in wheat grains and potential dietary health risk: A field investigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125585. [PMID: 33721774 DOI: 10.1016/j.jhazmat.2021.125585] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 05/23/2023]
Abstract
A field study was designed to explore the impacts of foliar-applied chemically and green synthesized titanium dioxide nanoparticles (TiO2 NPs) on cadmium (Cd) uptake in wheat plants. The wheat was grown in field which was contaminated with Cd and plants were subjected to foliar episodes of TiO2 NPs during plant growth period. Leaf extracts of two plant species (Trianthema portulacastrum, Chenopodium quinoa) were used for green synthesis while sol-gel method was used for chemical preparation of TiO2 NPs. Results showed that TiO2 NPs significantly enhanced the plant height, length of spikes photosynthesis, and straw and grain yield compared to control. TiO2 NPs minimized the oxidative burst in leaves and improved the enzyme activities than control. Cadmium concentrations of straw, roots and grains decreased after TiO2 NPs treatments than control. The grain Cd contents were below recommended threshold (0.2 mg Cd /kg grain DW) for cereals upon NPs exposure. The health risk index by the dietary use of grains for adults was below threshold upon NPs exposure. Overall, foliar use of TiO2 NPs prepared from plant extracts was appropriate in minimizing Cd contents in wheat grains, thereby reducing risk of Cd to human health via food chain.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Anwar-Ul-Haq
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Biology, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Jati Agung, South Lampung 35365, Indonesia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
9
|
Emmanouil C, Kungolos A. Environmental Toxicity Assessment: state of the art and future directions in a world of arising threats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3753-3755. [PMID: 33394407 DOI: 10.1007/s11356-020-11950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Athanasios Kungolos
- School of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|