1
|
Grassi P, Georgin J, S P Franco D, Sá ÍMGL, Lins PVS, Foletto EL, Jahn SL, Meili L, Rangabhashiyam S. Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:82-97. [PMID: 37345434 DOI: 10.1080/15226514.2023.2225615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The objective of this study is to develop a low-cost biosorbent using residual seeds of the Citrullus lanatus fruit for the removal of cationic dyes. Physicochemical parameters such as pH, adsorbent mass, contact time, and temperature were evaluated for their effects on dye removal. The biosorbent is composed of lignin and cellulose, exhibiting a highly heterogeneous surface with randomly distributed cavities and bulges. The adsorption of both dyes was most effective at natural pH with a dosage of 0.8 g L-1. Equilibrium was reached within 120 min, regardless of concentration, indicating rapid kinetics. The Elovich model and pseudo-second-order kinetics were observed for crystal violet and basic fuchsin dye, respectively. The Langmuir model fitted well with the equilibrium data of both dyes. However, the increased temperature had a negative impact on dye adsorption. The biosorbent also demonstrated satisfactory performance (R = 43%) against a synthetic mixture of dyes and inorganic salts, with a small mass transfer zone. The adsorption capacities for crystal violet and basic fuchsin dye were 48.13 mg g-1 and 44.26 mg g-1, respectively. Thermodynamic studies confirmed an exothermic nature of adsorption. Overall, this low-cost biosorbent showed potential for the removal of dyes from aqueous solutions.
Collapse
Affiliation(s)
- Patricia Grassi
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Dison S P Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Barranquilla, Colombia
| | - Ícaro M G L Sá
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - Pollyanna V S Lins
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Sérgio L Jahn
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, Brazil
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, Maceió, Brazil
| | - S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
2
|
Franco DS, Georgin J, Villarreal Campo LA, Mayoral MA, Goenaga JO, Fruto CM, Neckel A, Oliveira ML, Ramos CG. The environmental pollution caused by cemeteries and cremations: A review. CHEMOSPHERE 2022; 307:136025. [PMID: 35985390 DOI: 10.1016/j.chemosphere.2022.136025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In recent years the funeral industry has drawn attention from the scientific community concerning the potential pollution of the environment and the urban environment. In this review, the pollution caused by the cemeteries and crematoria around the world was addressed. The traditional burial leads to the production of ions, in the form of organic and heavy metals, bacteria, fungi, and viruses, that spread along with the soil and underwater. The crematoria produce small particles, trace gases (SOx, NOx, CO), and toxic organic volatiles. The effluent generated by both methods can lead to several environmental problems and further threaten human health. The current solution for the cemeteries in the development of a system in which effluent generated by the traditional burials are collected and treated before realizing in the environment. In addition to that, the green burial should be an alternative, since the corpse does not go through the embalming process, thus eliminating the presence of any undesired chemicals, that are further leached onto the environment. The crematoria should be employed as it is, however, the gas treatment station should be employed, to ensure the minimization of the impact on the environment. Last, future researches regarding the treatment of the cemeteries leached still need to be explored as well as the optimization and further development of the crematoria gas treatment process.
Collapse
Affiliation(s)
- Dison Sp Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, 080002, Colombia.
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, 97105-900, Santa Maria, Brazil
| | - Luis Angel Villarreal Campo
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, 080002, Colombia
| | - Maria Arango Mayoral
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, 080002, Colombia
| | - Jose Orozco Goenaga
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, 080002, Colombia
| | - Carolina Moreno Fruto
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, 080002, Colombia
| | - Alcindo Neckel
- Faculdade Meridional, IMED, 304- Passo Fundo, RS 99070-220, Brazil
| | - Marcos Leandro Oliveira
- Universidade Federal de Santa Catarina R. Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, Florianópolis, SC, 88040-900, Brasil
| | - Claudete Gindri Ramos
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, 080002, Colombia.
| |
Collapse
|
3
|
da Silva MD, da Boit Martinello K, Knani S, Lütke SF, Machado LMM, Manera C, Perondi D, Godinho M, Collazzo GC, Silva LFO, Dotto GL. Pyrolysis of citrus wastes for the simultaneous production of adsorbents for Cu(II), H 2, and d-limonene. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 152:17-29. [PMID: 35964399 DOI: 10.1016/j.wasman.2022.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
A route based on pyrolysis and physical activation with H2O and CO2 was proposed to reuse citrus waste traditionally discarded. The citrus wastes were orange peel (OP), mandarine peel (MP), rangpur lime peel (RLP), and sweet lime peel (SLP). The main aim was to use the solid products of this new route as adsorbents for Cu(II) ions. Copper ions are among the most important water pollutants due to their non-degradability, toxicity, and bioaccumulation, facilitating their inclusion and long persistence in the food chain. Besides the solid products, the liquid and gaseous fractions were evaluated for possible applications. Results showed that the citrus waste composition favored the thermochemical treatment. In addition, the following yields were obtained from the pyrolysis process: approximately 30 % wt. of biochar, 40 % wt. of non-condensable gases, and 30 % wt. of bio-oil. The biochars did not present a high specific surface area. Nevertheless, activated carbons with CO2 and H2O presented specific surface areas of 212.4 m2/g and 399.4 m2/g, respectively, and reached Cu(II) adsorption capacities of 28.2 mg g-1 and 27.8 mg g-1. The adsorption kinetic study revealed that the equilibrium was attained at 60 min and the pseudo-second-order model presented a better fit to the experimental data. The main generated gases were CO2, which could be employed as an activating agent for activated carbon production. d-limonene, used for food and medicinal purposes, was the main constituent of the bio-oil.
Collapse
Affiliation(s)
- Mariele D da Silva
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | | | - Salah Knani
- Northern Border University, College of Science, Arar, PO Box 1631, Saudi Arabia
| | - Sabrina F Lütke
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | - Lauren M M Machado
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | - Christian Manera
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias do Sul- UCS, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Daniele Perondi
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias do Sul- UCS, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Marcelo Godinho
- Engineering of Processes and Technologies Post-Graduate Program, University of Caxias do Sul- UCS, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Gabriela C Collazzo
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil
| | - Luis F O Silva
- Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Franco DSP, da Boit Martinello K, Georgin J, Netto MS, Foletto EL, Piccilli DGA, Silva LFO, Dos Reis GS, Dotto GL. Application of biowaste generated by the production chain of pitaya fruit (Hylocereus undatus) as an efficient adsorbent for removal of naproxen in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39754-39767. [PMID: 35112257 DOI: 10.1007/s11356-022-18981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical compounds are a serious problem in the environment. They cause damage to the aquatic, animal, and human organisms and soon became considered emerging pollutants where their removal is extremely urgent. Among the techniques used, adsorption has been used with success, where several adsorbent materials, including those from residual biomass, have been used to remove these pollutants. In this study, the skins of the pitaya fruit (Hylocereus undatus) productive chain were carbonized with ZnCl2 to obtain activated carbon and later used in the adsorption of the drug naproxen (NPX) in a batch system. The Freundlich model demonstrated a better adjustment for the equilibrium isotherms. A high adsorption capacity for NPX (158.81 mg g-1) was obtained at 328 K, which can be attributed to the remarkable textural properties of the adsorbent, besides certain functional groups present on its surface. Thermodynamic studies confirmed the endothermic nature of the adsorption process (∆H0 = 0.2898 kJ mol-1). The linear driving force model (LDF) presented a good statistical adjustment to the experimental kinetic data. The application of the material in the treatment of simulated wastewater composed of various pharmaceutical drugs and salts was very promising, reaching 75.7% removal. Therefore, it can be inferred that the application of activated carbon derived from pitaya bark is highly promising in removing the NPX drug and treating synthetic mixtures containing other pharmaceutical substances.
Collapse
Affiliation(s)
- Dison S P Franco
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Kátia da Boit Martinello
- Department of Health Sciences, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Edson Luiz Foletto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Daniel G A Piccilli
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Glaydson S Dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Guilherme Luiz Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|