1
|
Gao L, Huang X, Lu X, Tong Y, Feng J, Xu Y, Lin Y. Spatiotemporal changes in chlorophyll-a concentration in China's lakes and its driving factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40370220 DOI: 10.1039/d4em00731j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
This study provides a comprehensive analysis of the temporal and spatial variations in chlorophyll-a (Chl-a) concentrations across 524 lakes in China from 2007 to 2016, leveraging extensive water quality monitoring data to identify the key drivers of these changes. Our results indicate a general decline in Chl-a concentrations, suggesting a mitigation of eutrophication. However, significant regional and seasonal disparities persist, reflecting varying ecological conditions and anthropogenic influences. Elevated Chl-a concentrations were predominantly observed in regions with intensive agricultural and urban areas, such as the middle and lower reaches of the Yangtze River, the Pearl River Delta, and the North China Plain. In contrast, lower concentrations were recorded in areas with extensive forest and grassland cover, such as the northeast and southwest. Multiple linear regression analysis revealed that ammonia nitrogen (NH3-N) and chemical oxygen demand (CODMn) were the primary factors influencing Chl-a levels during the growing season, while water temperature (W-T), CODMn, and pH had greater impacts in the non-growing season. Categorized according to the key factors influencing Chl-a concentration, 52 lakes were divided into 7 categories, and future Chl-a concentrations were projected using data from the China National Environmental Monitoring Centre and the China Environmental Status Bulletin. Specifically, we estimate a 3.060% annual decrease in CODMn and a 2.748% annual decrease in NH3-N, total nitrogen (TN), and total phosphorus (TP), alongside a 0.350% annual increase in water temperature. These projections suggest that while most lakes are expected to see reductions in Chl-a concentrations, some CODMn-sensitive and water temperature-sensitive lakes may still experience increases, underscoring the complexity of interactions between multiple environmental factors. To address these dynamics, we recommend targeted management strategies, including reducing nutrient and organic matter inputs, enhancing ecological protection measures, and closely monitoring temperature fluctuations to mitigate the risk of algal blooms and maintain lake health.
Collapse
Affiliation(s)
- Liwei Gao
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xin Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, 300072, Tianjin, China
| | - Jianfeng Feng
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yingying Xu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yan Lin
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Liu J, Zhang Q, Li X, Gao X, Peng Y. Enhancing nitrogen removal from low-strength municipal wastewater by partial denitrification coupled with anammox in plug flow pure biofilm system. BIORESOURCE TECHNOLOGY 2025; 432:132646. [PMID: 40355004 DOI: 10.1016/j.biortech.2025.132646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Biofilm has been widely utilized to retain anaerobic ammonium-oxidizing bacteria (AnAOB). However, most research on partial denitrification/anammox (PD/A) focuses on hybrid systems, with limited insights into systems dominated by complete biofilms. This study established pure biofilm system within plug-flow reactor to treat low strength municipal wastewater. Strategies such as two-point feeding significantly increased the activity of AnAOB within anoxic biofilm, reaching 2.0 mg N/g Mixed Liquor Suspended Solids/h. The ΔNO3--N/ΔNH4+-N indicated a more balanced relationship between denitrification and anammox. The reactor operated stably for 240 days, achieving a substantial nitrogen removal efficiency of 75.5 ± 3.6 % with influent carbon/nitrogen ratio of 3.2. Candidatus_Brocadia, whose abundance surged to 2.6 %, contributed 42.5 % to nitrogen removal, predominantly colonized the interior. Partial denitrification bacteria (Dechloromonas, Thauera) preferred the outer layer, exhibiting sustaining nitrite supply for AnAOB growth. This study highlights the potential of pure biofilm system for mainstream anammox application.
Collapse
Affiliation(s)
- Jialing Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing University of Technology, Beijing 100124, PR China
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Rathor P, Gorim LY, Chen G, Thilakarathna MS. The Effect of Humalite on Improving Soil Nitrogen Availability and Plant Nutrient Uptake for Higher Yield and Oil Content in Canola. PHYSIOLOGIA PLANTARUM 2025; 177:e70201. [PMID: 40207787 PMCID: PMC11984079 DOI: 10.1111/ppl.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Over the last half-century, the widespread use of synthetic chemical fertilizers has boosted crop yields but caused noticeable environmental damage. In recent years, the application of humic substances to increase plant growth and crop yield has gained considerable interest, largely due to their organic origin and their ability to reduce nutrient losses while enhancing plant nutrient use efficiency. Humalite, found exclusively in large deposits in southern Alberta, Canada, is rich in humic substances and has low levels of unwanted ash and heavy metals, which makes it particularly valuable for agricultural applications. However, its effects on canola, the largest oilseed crop in Canada and the second-largest in the world, have yet to be evaluated. This study investigated the effects of five Humalite rates (0, 200, 400, 800, and 1600 kg ha-1) in combination with nitrogen, phosphorus, and potassium (NPK) applied at recommended levels, on canola growth, soil nitrogen availability, plant nutrient uptake, photosynthesis, seed yield, seed oil content, and nitrogen use efficiency under controlled environmental conditions. The results demonstrated that Humalite application significantly enhanced soil nitrogen availability, uptake of macro- and micronutrients (N, P, K, S, Mg, Mn, B, Fe and Zn), shoot and root biomass, net photosynthesis, and water use efficiency as compared to the NPK alone treatment. The application of Humalite also led to increased seed yield, seed oil content, and nitrogen use efficiency. Taken together, Humalite could serve as an effective organic soil amendment to enhance canola growth and yield while enhancing fertilizer use efficiency.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | | |
Collapse
|
4
|
Zhai T, Zhang L, Zhang F, Su X, Chen P, Xing Z, Liu H, Zhao T. Characteristics of biofilm layer in a bio-doubling reactor and their impact on aerobic denitrifying bacteria enrichment. ENVIRONMENTAL RESEARCH 2025; 267:120730. [PMID: 39736437 DOI: 10.1016/j.envres.2024.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/01/2025]
Abstract
Microbial loss significantly affects wastewater treatment efficiency. This study simulated the inoculation area of a self-developed biological doubling reactor (BDR) to evaluate the retention efficiency of seven different fillers for aerobic denitrifying bacteria. Over 90 days of continuous operation, the porous filler R3 demonstrated excellent performance, with OD600 values consistently exceeding 1.0 and minimal fluctuation. On day 90, the seed liquid amplified with R3 achieved removal efficiencies of 100% for ammonia nitrogen, 97.75% for total nitrogen, and 96.4% for chemical oxygen demand, outperforming other fillers. Scanning electron microscopy and microscopic analysis revealed that R3's large large specific surface area and volume formed a unique meshed biofilm structure, enhancing oxygen and nutrient transport while minimizing detachment. This promoted effective enrichment and retention of aerobic denitrifying bacteria. Microbial diversity analysis confirmed that Acinetobacter, a key genus involved in aerobic denitrification, dominated the network biofilm on R3, accounting for an average of 35.63%. while granular fillers, due to oxygen limitation, promoted the growth of anaerobic ammonium-oxidizing Alcaligenes. The use of BDR-enhanced MBBR for treating synthetic wastewater resulted in a 29.6% increase in TN removal efficiency, with stable system operation. The use of porous fillers with a high specific volume supports stable biofilm formation and consistent seed liquid output, providing a viable solution to microbial loss in wastewater treatment processes.
Collapse
Affiliation(s)
- Tianrui Zhai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Fupan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xia Su
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Peipei Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hao Liu
- Chongqing shiji eco-environmental science and technology co., ltd, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| |
Collapse
|
5
|
Yan M, Wang C, Wu H, Wu T, Fang L, Han X. Screening, identification and functional validation of Microcystin-LR direct binding target proteins based on thermal proteomics profiling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178047. [PMID: 39675292 DOI: 10.1016/j.scitotenv.2024.178047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Microcystin-LR (MC-LR) is one of the most common harmful cyanobacterial toxin and poses a serious threat to human health and ecosystems. The accepted toxic effect of MC-LR is to inhibit its enzymatic activity by covalently binding to protein phosphatase 2A (PP2A). However, numerous researches have revealed that the toxic effects of MC-LR are not solely dependent on PP2A. To date, there have been no relevant reports of MC-LR binding to other exact targets to produce toxic effects, and there is an urgent need to decipher the potential direct targets of MC-LR. Thermal proteome profiling (TPP) is a novel technique for the identification of active small molecule target proteins based on the principle that protein-ligand binding can increase the thermal stability of proteins. For this purpose, we used the TPP technique in combination with SWATH-DIA mass spectrometry to systematically assess the changes in the thermal stability of the proteins, thus searching for potential direct-acting target proteins of MC-LR. The results showed that 129 proteins, including PP2A, were potential binding targets of MC-LR. Bioinformatics analysis of 129 proteins enriched for response to dopamine, proteasome complex, and NF-kappaB binding was consistent with previous MC-LR toxicity studies. MC-LR could directly bind to target proteins such as PSMD4, PSMB9, HDAC2, and MAPK1 by CETSA-Western blot and MST assay. It was further confirmed by functional validation that MC-LR may lead to inhibition of proteasome activity through binding to PSMD4/PSMB9, suggesting that the proteasome is one of the toxic targets of MC-LR. This study reveals the existence of multiple targets of MC-LR after entering the organism, which broadens the horizon and provides a valuable reference for the study of the toxicity mechanism of MC-LR.
Collapse
Affiliation(s)
- Minghao Yan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chengzhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Huifang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Tong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
6
|
Debnath S, Das Ghosh B, Lianthuamluaia L, Kumari S, Puthiyottil M, Karnatak G, Sarkar UK, Das BK. A hybrid ecological evaluation of the fisheries in changing climate: case study from a peri-urban tropical wetland of Kolkata, Eastern India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:5. [PMID: 39621166 DOI: 10.1007/s10661-024-13452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/16/2024] [Indexed: 01/23/2025]
Abstract
The degradation of peri-urban wetlands has been a significant consequence of urban development and climate change. The present study discovered the decadal changes in land cover and climate impact on Raja Wetland, revealing significant alterations from 2011 to 2021. The analysis indicates substantial reductions in agricultural land (36.36%), fallow land (30.90%), water spread areas (10.14%) and surrounding wetlands (18.06%). Conversely, settlements, terrestrial vegetation and aquatic macrophytes increased by 19.77%, 3.39% and 1.16%, respectively. The primary driver of wetland shrinkage was urban expansion leading to a decrease in wetland area from 43.39 ha in 2011 to 38.99 ha in 2021. Climate data from 1991 to 2020 show a decreasing trend in annual rainfall (τ = - 0.274, p = 0.035) and an increasing trend in annual temperature (τ = 0.339, p = 0.009), with significant warming particularly during the monsoon months. The wetland's physicochemical attributes fluctuate seasonally, with eutrophic conditions prevailing (TSI range: 61.41-80.36). Notably, fish diversity is impacted by the dominance of the invasive species Oreochromis niloticus, which constitutes 89.31% of the catch. The established planktonic indicator genera of organic pollution were found to be abundant throughout the study period. These, combined with urban pollution and eutrophication, have led to a reduction in native fish species and overall aquatic health. The study highlights the urgent need for conservation measures to address the ecological imbalance and restore wetland resilience amidst ongoing climate and anthropogenic pressures. The communication also proposes various recommendations for the recovery and sustainable future use of wetland fisheries in the context of ongoing changes.
Collapse
Affiliation(s)
- Sanjeet Debnath
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Bandana Das Ghosh
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | | | - Suman Kumari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Mishal Puthiyottil
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Gunjan Karnatak
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Uttam Kumar Sarkar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| |
Collapse
|
7
|
Li Y, Bian J, Wang F, Sun X, Lou Y. Characterization of phosphorus storage and release fluxes at the sediment-water interface of lakes in typical agricultural and irrigation areas: a case study of Chagan Lake in western Jilin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:528. [PMID: 39589585 DOI: 10.1007/s10653-024-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Endogenous phosphorus release from sediments is a major cause of eutrophication in water bodies. To investigate the endogenous phosphorus morphological features and migration patterns in lakes under the influence of agricultural irrigation areas, we analyzed the changes of polymorphic phosphorus content in lake sediments under irrigation withdrawal conditions based on field sampling tests and sediment phosphorus release dynamics simulation experiments and used the diffusive flux method to determine the flux of phosphorus release from the sediment-water interface (SWI). The results showed that: (1) Data from encrypted sampling during the receding period revealed total phosphorus (TP) of lake water decreased from 0.11 mg/L to 0.05 mg/L, and TP of sediment increased from 723.53 mg/kg to 955.89 mg/kg. (2) The order of polymorphic phosphorus content of sediments at the lake inlet before the irrigation period was Fe-Al bound phosphorus (NaOH-nrP) > insoluble phosphorus > Fe-Al oxide bound phosphorus (NaOH-rP) > Calcium bound phosphorus (Ca-P) > Fe-Mn chelated phosphorus (BD-P) > active phosphorus. Interconversion between sedimentary polymorphic phosphorus is more drastic after the irrigation period. (3) The phosphorus forms extracted from sediments were ranked as insoluble phosphorus > NaOH-nrP > NaOH-rP > active phosphorus > Ca-P > BD-P. Insoluble phosphorus is the predominant form of phosphorus in sediments. (4) The TP exchange fluxes between the SWI by the diffusive flux method were 0.30 mg/(m2·h) and -0.33 mg/(m2·h) respectively. Receding water conditions promote sediment adsorption of TP from overlying water. The research findings establish a theoretical foundation for endogenous phosphorus from lake sediments in agricultural irrigation areas.
Collapse
Affiliation(s)
- Yining Li
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- College of New Energy and Environment Institute, Jilin University, Changchun, 130021, People's Republic of China
| | - Jianmin Bian
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- College of New Energy and Environment Institute, Jilin University, Changchun, 130021, People's Republic of China
| | - Fan Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- College of New Energy and Environment Institute, Jilin University, Changchun, 130021, People's Republic of China
| | - Xiaoqing Sun
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
- College of New Energy and Environment Institute, Jilin University, Changchun, 130021, People's Republic of China.
| | - Yuqi Lou
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
- College of New Energy and Environment Institute, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
8
|
Zhen Z, Yang Y, Liu Z, Sun H, He C. Porous red mud ceramsite for aquatic phosphorus removal: Application in constructed wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124688. [PMID: 39116925 DOI: 10.1016/j.envpol.2024.124688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Red mud (RM) and spent oyster mushroom substrate (SOMS), by-products of industrial and agricultural production, can be recycled for polluted freshwater purification, bringing about a win-win situation. In this study, unacidified RM and RM acidified with oxalic acid (O-RM) and hydrochloric acid (H-RM), respectively, were mixed with SOMS to produce a porous ceramsite as a potential constructed wetlands (CWs) substrate. The results showed that the O-RM, H-RM, and RM ceramsites displayed fine compressive strengths of 7.75 ± 1.14, 8.40 ± 1.30, and 8.84 ± 0.69 MPa after calcining at 950 °C for 30 min, respectively. The phosphorus adsorption capacities of H-RM, O-RM, and RM ceramsite at a solid-liquid ratio of 25 g/L were 1.18 mg/g, 0.88 mg/g, and 1.06 mg/g, respectively. Toxicity release experiments showed that the ceramsites did not cause secondary environmental pollution, except for arsenic (ranging from 0.210 to 0.238 mg/L). The H-RM ceramsite was tested in a tidal flow-vertical flow CW (TF-VFCW) with Iris pseudacorus L. and Canna indica L plants. In the TF-VFCW, the average chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) removal rates were 81.01, 90.25, 66.90, and 77.32 %, respectively. Plant growth had less impact on COD and NH4-N removal but had greater limited TN and TP removal. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analysis confirmed that acid pretreatment and the incorporation of SOMS significantly increased the surface and interior porous structures of the ceramsite and enhanced phosphate adsorption by the polyhydroxyl aluminum-iron complex ions. Bacteroides and Campylobacter used the energy produced during polyhydroxyalkanoic acid (PHA) catabolism to absorb phosphorus. Therefore, the synergistic effect of the substrate, plants, and microorganisms achieved the removal of phosphorus from CWs and offered effective and environmentally friendly recycling of RM and SOMS.
Collapse
Affiliation(s)
- Zhilei Zhen
- College of Urban and Rural Construction, Shanxi Agricultural University, Mingxian South Road 1, Taigu, Shanxi, 030800, China.
| | - Yazheng Yang
- College of Urban and Rural Construction, Shanxi Agricultural University, Mingxian South Road 1, Taigu, Shanxi, 030800, China
| | - Zihui Liu
- College of Urban and Rural Construction, Shanxi Agricultural University, Mingxian South Road 1, Taigu, Shanxi, 030800, China
| | - Haojun Sun
- College of Urban and Rural Construction, Shanxi Agricultural University, Mingxian South Road 1, Taigu, Shanxi, 030800, China
| | - Chenxi He
- College of Urban and Rural Construction, Shanxi Agricultural University, Mingxian South Road 1, Taigu, Shanxi, 030800, China
| |
Collapse
|
9
|
Zhang Q, Xiong Y, Zhang J, Liu B, Chen T, Liu S, Dang C, Xu WD, Ahmad HA, Liu T. Eutrophication impacts the distribution and functional traits of viral communities in lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174339. [PMID: 38960155 DOI: 10.1016/j.scitotenv.2024.174339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Viruses play a crucial role in aquatic ecosystems by regulating microbial composition and impacting biogeochemical cycling. While the response of viral diversity to the trophic status has been preliminarily explored in lake ecosystems, there is limited integrated exploration of the biogeography of viruses, host associations, and the auxiliary metabolic genes (AMGs), particularly for plateau lakes. Therefore, this research investigated the viral biogeography, virus-host association, and AMGs in the surface waters of 11 lakes varying in trophic levels (eutrophic and oligo-mesotrophic) in the Yunnan-Guizhou plateau region of China. A total of 73,105 viral operational taxonomic units were obtained from 11 samples, with 84.8 % remaining unannotated at the family level, indicating a predominance of novel viruses within these lakes. The most abundant viral family was Kyanoviridae (24.4 %), recognized as a common cyanophage. The vast majority of cyanobacteria and several eukaryotic algae were predicted as hosts for the viruses, with a lytic lifestyle predominating the life strategy of these cyanophages, implying the potential influence of the virus on algae. The viral community structure significantly correlated with both trophic status and the bacterial community. The structure equation model analysis revealed chlorophyll a was the primary factor affecting viral communities. Moreover, numerous AMGs linked to carbon metabolism, phosphorus metabolism, sulfur metabolism, and photosynthesis were found in these lakes, some of which showed virus preference for the trophic statuses, suggesting a vital role of the virus in driving biogeochemical cycling in the lake crossing different nutrient levels. In addition, a restricted presence of viruses was found to infect humans or harbor antibiotic resistance genes in the lakes, suggesting a subtle yet potential link to human health. Overall, these findings offer insights into the response of viral communities to eutrophication and their potential role in biogeochemical cycling and controlling algal propagation.
Collapse
Affiliation(s)
- Qiue Zhang
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yanxuan Xiong
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jinhong Zhang
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Boya Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Shufeng Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei D Xu
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan, Hubei 430010, PR China
| | - Hafiz Adeel Ahmad
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
10
|
Jia D, Wei S, Wang S. Meta-analysis revealed the factors affecting the functions of ecological floating bed in removing nitrogen and phosphorus from eutrophic water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59712-59726. [PMID: 39367218 DOI: 10.1007/s11356-024-35241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Ecological floating bed (EFB) has been widely used to remove nitrogen and phosphorus from eutrophic water. However, its effects on nitrogen and phosphorus removal are different in various studies. Presently it has not been systematically clear what factors produce effects on EFB removing nitrogen and phosphorus from eutrophic water. In this study, we performed a meta-analysis of 169 articles to discuss the effects of EFB characteristics and experimental conditions on EFB removing nitrogen and phosphorus. Results showed that EFB generally decreased nitrogen and phosphorus concentrations in eutrophic water regardless of EFB characteristics and experimental conditions. EFB showed better effects on simultaneously removing TN, NH4+-N, and TP when it had one of the characteristics: constructed by monocots, 2-3 plant species, an area of 1.1-3.0 m2, and the coverage of 21%-40%. However, NO3--N removal by EFB was complicated due to the effects of nitrification and denitrification. Moreover, EFB plant density also showed different effects on nitrogen and phosphorus removal. Experimental conditions produced evident effects on EFB removing nitrogen and phosphorus, and it showed better effects under one of the conditions: water temperature of 16-25℃, experimental duration of 31-60 days, long hydraulic retention time, and aeration. This study indicates that EFB can significantly remove nitrogen and phosphorus from eutrophic water, and it is an effective technology to control water eutrophication, but the effects of EFB characteristics and environmental conditions on EFB function should be considered in application.
Collapse
Affiliation(s)
- Deyi Jia
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuainan Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Feng L, Wang Y, Hou X, Qin B, Kuster T, Qu F, Chen N, Paerl HW, Zheng C. Harmful algal blooms in inland waters. NATURE REVIEWS. EARTH & ENVIRONMENT 2024; 5:631-644. [PMID: 39995947 PMCID: PMC11849997 DOI: 10.1038/s43017-024-00578-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 02/26/2025]
Abstract
Harmful algal blooms can produce toxins that pose threats to aquatic ecosystems and human health. In this Review, we outline the global trends in harmful algal bloom occurrence and explore the drivers, future trajectories and potential mitigation strategies. Globally, harmful algal bloom occurrence has risen since the 1980s, including a 44% increase from the 2000s to 2010s, especially in Asia and Africa. Enhanced nutrient pollution owing to urbanization, wastewater discharge and agricultural expansion are key drivers of these increases. In contrast, changes have been less substantial in high-income regions such as North America, Europe and Oceania, where policies to mitigate nutrient pollution have stabilized bloom occurrences since the 1970s. However, since the 1990s, climate warming and legacy nutrient pollution have driven a resurgence in toxic algal blooms in some US and European lakes, highlighting the inherent challenges in mitigating harmful blooms in a warming climate. Indeed, advancing research on harmful algal bloom dynamics and projections largely depends on effectively using data from multiple sources to understand environmental interactions and enhance modelling techniques. Integrated monitoring networks across various spatiotemporal scales and data-sharing frameworks are essential for improving harmful algal bloom forecasting and mitigation.
Collapse
Affiliation(s)
- Lian Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xuejiao Hou
- School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Tiit Kuster
- Estonian Marine Institute, University of Tartu, Tallinn, Estonia
| | - Fan Qu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hans W. Paerl
- Institute of Marine Sciences, Department of Earth, Marine and Environmental Sciences, UNC Chapel Hill, Morehead City, NC, USA
| | - Chunmiao Zheng
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China
| |
Collapse
|
12
|
Pinheiro TL, Becker V, da Cunha KPV, Frota A, Monicelli F, Araújo F, Capelo-Neto J. The use of coagulant and natural soil to control cyanobacterial blooms in a tropical reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173378. [PMID: 38795993 DOI: 10.1016/j.scitotenv.2024.173378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Cyanobacterial blooms have been a growing problem in water bodies and attracted attention from researcher and water companies worldwide. Different treatment methods have been researched and applied either inside water treatment plants or directly into reservoirs. We tested a combination of coagulants, polyaluminium chloride (PAC) and iron(III) chloride (FeCl3), and ballasts, luvisol (LUV) and planosol (PLAN), known as the 'Floc and Sink' technique, to remove positively buoyant cyanobacteria from a tropical reservoir water. Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to optimize the two reaction variables - coagulant dosage (x1) and ballast dosage (x2) to remove the response variables: chlorophyll-a, turbidity, true color, and organic matter. Results showed that the combination of LUV with PAC effectively reduced the concentration of the response variables, while PLAN was ineffective in removing cyanobacteria when combined to PAC or FeCl3. Furthermore, FeCl3 presented poorer floc formation and lower removal efficiency compared to PAC. This study may contribute to the theoretical and practical knowledge of the algal biomass removal for mitigating eutrophication trough different dosages of coagulants and ballasts.
Collapse
Affiliation(s)
- Thaís Lopes Pinheiro
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| | - Vanessa Becker
- Federal University of Rio Grande do Norte, Postgraduate Program in Civil and Environmental Engineering, Natal, Brazil
| | | | - André Frota
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil
| | - Fernanda Monicelli
- Federal University of Rio Grande do Norte, Postgraduate Program in Ecology, Natal, Brazil
| | - Fabiana Araújo
- Federal University of Rio Grande do Norte, Postgraduate Program in Civil and Environmental Engineering, Natal, Brazil
| | - José Capelo-Neto
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil
| |
Collapse
|
13
|
Tesfaye M, Breuer L. Performance of water indices for large-scale water resources monitoring using Sentinel-2 data in Ethiopia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:467. [PMID: 38649620 PMCID: PMC11035413 DOI: 10.1007/s10661-024-12630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Evaluating the performance of water indices and water-related ecosystems is crucial for Ethiopia. This is due to limited information on the availability and distribution of water resources at the country scale, despite its critical role in sustainable water management, biodiversity conservation, and ecosystem resilience. The objective of this study is to evaluate the performance of seven water indices and select the best-performing indices for detecting surface water at country scale. Sentinel-2 data from December 1, 2021, to November 30, 2022, were used for the evaluation and processed using the Google Earth Engine. The indices were evaluated using qualitative visual inspection and quantitative accuracy indicators of overall accuracy, producer's accuracy, and user's accuracy. Results showed that the water index (WI) and automatic water extraction index with shadow (AWEIsh) were the most accurate ones to extract surface water. For the latter, WI and AWEIsh obtained an overall accuracy of 96% and 95%, respectively. Both indices had approximately the same spatial coverage of surface water with 82,650 km2 (WI) and 86,530 km2 (AWEIsh) for the whole of Ethiopia. The results provide a valuable insight into the extent of surface water bodies, which is essential for water resource planners and decision-makers. Such data can also play a role in monitoring the country's reservoirs, which are important for the country's energy and economic development. These results suggest that by applying the best-performing indices, better monitoring and management of water resources would be possible to achieve the Sustainable Development Goal 6 at the regional level.
Collapse
Affiliation(s)
- Mathias Tesfaye
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.
| | - Lutz Breuer
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
- Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Zhang H, Xu Y, Liu X, Ma B, Huang T, Kosolapov DB, Liu H, Guo H, Liu T, Ni T, Zhang X. Different seasonal dynamics, ecological drivers, and assembly mechanisms of algae in southern and northern drinking water reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171285. [PMID: 38423304 DOI: 10.1016/j.scitotenv.2024.171285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The role of environmental factors on the community structure of algae has been intensively studied, but there are few analyses on the assembly mechanism of the algal community structure. Here, changes in the community structure of algae in different seasons, the effects of environmental variables on the algal community structure, and the assembly mechanism of the algal community structure in northern and southern reservoirs were investigated in this study. The study revealed that Bacillariophyta, Cyanophyta, and Chlorophyta were the predominant algal species in the reservoirs, with Bacillariophyta and Cyanophyta exhibiting seasonal outbreaks. Compared to the northern reservoirs, the algal diversity in the southern reservoirs was greater. The diversity and algal community structure could be significantly impacted by variations in water temperature and nitrogen level. According to the ecological model, the interaction among algal communities in reservoirs was primarily cooperation. The key taxa in the northern reservoirs was Aphanizomenon sp., while the outbreak in the southern reservoirs was Coelosphaerium sp. The community formation pattern of reservoirs was stochastic, with a higher degree of explanation observed in the southern reservoirs compared to the northern reservoirs. This study preliminarily explored the assembly mechanism of the algal community, providing a theoretical basis for the control of eutrophication in drinking water reservoirs.
Collapse
Affiliation(s)
- Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yue Xu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Hanyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tongchao Ni
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoli Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
15
|
Fei Q, Li W, Wang S, Zhou Z, Wang W, Li M. Risk and mechanisms of phosphorus release at the sediment-water interface of lakes in cold and arid regions during non-frozen seasons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23579-23590. [PMID: 38421544 DOI: 10.1007/s11356-024-32704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
In recent years, the eutrophication of lakes has accelerated in cold arid regions; the release of nutrients from sediments is an important contributor. The sequential extraction method, high-resolution peeper (HR-Peeper), and diffusive gradients in thin films (DGT) techniques were used to study the occurrence characteristics, release risk, and release mechanism of phosphorus (P) at the sediment-water interface (SWI) of Ulanor Wetland in the Hulun Lake Basin, Inner Mongolia, China. The mean total P concentration in overlying water was lower in August than that in May. Dissolved organic P (DOP) or particulate P (PP) was the main form of P in the overlying water. PP dominates in May and DOP in August. Refractory P was the main form of P in sediments. The concentrations of soluble reactive P and DGT-active P in the pore water of the sediment column were higher than those in the overlying water, and the concentrations were higher in August than those in May. Release of P in the wetland sediments occurred during the non-frozen seasons, with a higher risk in August than in May. The good linear correlation between dissolved P, Fe, and Mn in the DGT profiles verified their co-release due to the anaerobic reduction of Fe/Mn oxides. Moreover, alkaline sediments are also conducive to the release of sediment P. This study can provide data and theoretical support for eutrophication control in Ulanor Wetland and other similar water bodies in cold and arid regions.
Collapse
Affiliation(s)
- Qi Fei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Wei Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Zhanqi Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Wenwen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Mengze Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
16
|
Zhang B, Fu Z, Ji Y, Zhou J. A spatiotemporal optimization method for nutrient control in lake watersheds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119608. [PMID: 37992660 DOI: 10.1016/j.jenvman.2023.119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Developing an efficient strategy for managing nutrients in less-developed lake watersheds that can balance the need for socioeconomic progress with the protection of aquatic ecosystems has become an urgent research subject for achieving sustainable development. This paper improves the optimization method for environmental and economic management of lake watersheds proposed in our previous research. A spatiotemporal optimization method based on a coupling model consisting of the Soil and Water Assessment Tool, system dynamics model, and objective programming model was applied to an agricultural non-point source (ANPS) pollution control program and a rural sewage treatment program at the Yilong Lake watershed as a case study. A simulation evaluation showed that the efficiency of the previous scheme was significantly improved after conducting spatiotemporal optimization. This scheme was dynamic and distributed, demonstrating an annual and high-resolution control program that can provide a basis for the precise management of ANPS. Although it still requires improvement, a framework for coupling simulation and two-step optimization was achieved in this study.
Collapse
Affiliation(s)
- Baichuan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, PR China.
| | - Zhenghui Fu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yijia Ji
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing, 100041, PR China.
| | - Jinsong Zhou
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing, 100041, PR China; College of Environment, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
17
|
Zhou L, Guo F, Jiang Y, Liu W, Meng F, Wang C. A pilot-scale SNAD-MBBR process for treating anaerobic digester liquor of swine wastewater: performance and microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120329-120339. [PMID: 37936048 DOI: 10.1007/s11356-023-30840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
In this pilot-scale study, simultaneous partial nitrification, anammox, and denitrification (SNAD) process was achieved successfully in a moving bed biofilm reactor (MBBR) for treating anaerobic digester liquor of swine wastewater. After 95 days of operation, when the total nitrogen loading rate of SNAD-MBBR process was 1.09 kg TN/m3/day, the total nitrogen removal rate could reach 0.87 kg TN/m3/day, and the removal efficiencies of ammonium and total nitrogen were 92.0% and 79.7%, respectively. The optimum pH and temperature for SNAD-MBBR process were 8.5 and 35 °C, respectively, and the optimum dissolved oxygen for SNAD1 and SNAD2 were 0.30 and 0.07 mg/L, respectively. The 16S rRNA sequencing suggested that Candidatus Kuenenia, Candidatus Brocadia, Nitrosomonas, and Denitratisoma were the dominant nitrogen removal bacteria. Some of the co-existing bacteria (Truepera, Limnobacter, and Anaerolineaceae uncultured) promoted ammonium oxidation and guaranteed the growth of the anammox bacteria under adverse environmental conditions. Overall, this study demonstrated that the SNAD-MBBR process would be an energy-saving and cost-effective method for the removal of nitrogen from swine wastewater and provided important process parameters for stable operation of the full-scale SNAD process.
Collapse
Affiliation(s)
- Liang Zhou
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, 210000, People's Republic of China
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Fangzheng Guo
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Yongwei Jiang
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, People's Republic of China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing, 210000, People's Republic of China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
18
|
Ding Y, Song Z, Zhang W, Hu Y, Xiao S. Long-term control of non-point source pollution by adjusting human environmental behavior in watershed-a new perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116239-116251. [PMID: 37910351 DOI: 10.1007/s11356-023-30496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
The control of non-point source pollution is a major scientific and technological problem faced by mankind. We proposed a new approach to eliminate non-point source pollution, focusing on adjusting human environmental behavior. The implementation procedures are as follows: (1) Investigate the intention of pollution discharge behavior through interviews and questionnaires. (2) Carry out targeted intervention within the framework of social psychology to transform it into an environmentally friendly mode. (3) Calculate the amounts of pollutants produced and discharged before and after the intervention, and then evaluate the effect of the intervention on reducing pollution. (4) Based on successful interventions, a scheme can be developed to curb non-point source pollution. Aiming to reduce fertilizer use, a case study was conducted in Hetao Irrigation District, one of the three major Irrigation districts in China. The results showed that the interventions indirectly affected intention through attitude, subjective norm, and perceived behavioral control. The structural equation model explained 76.0% of the total variance of farmers' intention to reduce fertilizer application (SMC = 0.760), indicating effective intervention. Subsequently, a program to curb non-point source pollution was developed. This study can provide a key scientific and applied reference for the long-term control of non-point source pollution in watershed.
Collapse
Affiliation(s)
- Yuekui Ding
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
- Inner Mongolia Key Laboratory of River and Lake Ecology, Hohhot, 010021, China.
| | - Zhaoxin Song
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wenqiang Zhang
- State Key Laboratory On Environmental Aquatic Chemistry Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, China
| | - Yan Hu
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Suirong Xiao
- College of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
19
|
Huang Y, Su R, Bu Y, Ma B. A predictive model for determining the nitrite concentration in the effluent of an anammox reactor using ensemble regression tree algorithm. CHEMOSPHERE 2023; 339:139553. [PMID: 37482314 DOI: 10.1016/j.chemosphere.2023.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a cost-effective biological nitrogen removal method for treating wastewater. Nitrite has strong negative effect on microbial activity of anammox bacteria, while the conventional equitment available for determining nitrite on-line is challenging due to high price. By knowing the concentration of nitrite in the effluent, its concentration in the reactor can be controlled accordingly. To investigate this, an ensemble regression tree algorithm was used to establish the predictive model proposed in the current work. Moreover, the Bayesian algorithm was adopted to systematically optimize various parameters of machine learning algorithms. The predicted concentrations of nitrite were in good agreement with the observed values, and the coefficient of determination (R2) and root mean squared error (RMSE) values reached 0.91 and 4.81, respectively. Furthermore, the model established by the ensemble regression tree algorithm was compared with models established by commonly used machine learning algorithms. Finally, the established models were applied to another anammox reactor, and the predicted results of ensemble regression tree model were found to be in good agreement with the experimental values with R2 and RMSE values of 0.84 and 6.34, respectively.
Collapse
Affiliation(s)
- Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China
| | - Yinan Bu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China.
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou, 570228, China.
| |
Collapse
|
20
|
Yan G, Yin X, Wang X, Zhang Y, Wang E, Yu Z, Ma X, Huang M. Effects of Summer and Autumn Drought on Eutrophication and the Phytoplankton Community in Dongting Lake in 2022. TOXICS 2023; 11:822. [PMID: 37888674 PMCID: PMC10610670 DOI: 10.3390/toxics11100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Since July 2022, the Yangtze River basin has experienced the most severe hydro-meteorological drought since record collection started in 1961, which has greatly affected the ecological environment of the Dongting Lake (DTL) basin. To investigate the effects of drought events on the eutrophication and phytoplankton community structure of DTL, the lake was sampled twice in August and September 2022 based on the water level fluctuations resulting in 47 samples. Furthermore, we combined the comprehensive trophic level index (TLI) and phytoplankton Shannon-Wiener diversity index (H) to characterize and evaluate the eutrophication status. The key influencing factors of the phytoplankton community were identified using redundancy analysis (RDA), hierarchical partitioning, and the Jaccard similarity index (J). Our results showed that the TLI of DTL changed from light-moderate eutrophication status (August) to mesotrophic status (September), whereas the H changed from light or no pollution to medium pollution. The phytoplankton abundance in August (122.06 × 104 cells/L) was less than that in September (351.18 × 104 cells/L) in DTL. A trend in phytoplankton community succession from Bacillariophyta to Chlorophyta and Cyanophyta was shown. The combination of physiochemical and ecological assessment more accurately characterized the true eutrophic status of the aquatic ecosystem. The RDA showed that the key influencing factors in the phytoplankton community were water temperature (WT), pH, nitrogen and phosphorus nutrients, and the permanganate index (CODMn) in August, while dissolved oxygen (DO) and redox potential (ORP) were the key factors in September. Hierarchical partitioning further indicated that temporal and spatial variations had a greater impact on the phytoplankton community. And the J of each region was slightly similar and very dissimilar, from August to September, which indicated a decreased hydrological connectivity of DTL during drought. These analyses indicated that the risk to the water ecology of DTL intensified during the summer-autumn drought in 2022. Safeguarding hydrological connectivity in the DTL region is a prerequisite for promoting energy flow, material cycle, and water ecosystem health.
Collapse
Affiliation(s)
- Guanghan Yan
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (G.Y.); (X.Y.); (E.W.)
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Scientific Observation and Research Station for Lake Dongting, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
| | - Xueyan Yin
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (G.Y.); (X.Y.); (E.W.)
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Scientific Observation and Research Station for Lake Dongting, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xing Wang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (G.Y.); (X.Y.); (E.W.)
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Scientific Observation and Research Station for Lake Dongting, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunyu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
| | - Enrui Wang
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (G.Y.); (X.Y.); (E.W.)
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhibing Yu
- Hunan East Dongting Lake National Nature Reserve, Yueyang 414000, China; (Z.Y.); (X.M.)
| | - Xingliang Ma
- Hunan East Dongting Lake National Nature Reserve, Yueyang 414000, China; (Z.Y.); (X.M.)
| | - Minsheng Huang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
| |
Collapse
|
21
|
Meckoni SN, Nass B, Pucker B. Phylogenetic placement of Ceratophyllum submersum based on a complete plastome sequence derived from nanopore long read sequencing data. BMC Res Notes 2023; 16:187. [PMID: 37626355 PMCID: PMC10464454 DOI: 10.1186/s13104-023-06459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE Eutrophication poses a mounting concern in today's world. Ceratophyllum submersum L. is one of many plants capable of living in eutrophic conditions, therefore it could play a critical role in addressing the problem of eutrophication. This study aimed to take a first genomic look at C. submersum. RESULTS Sequencing of gDNA from C. submersum yielded enough reads to assemble a plastome. Subsequent annotation and phylogenetic analysis validated existing information regarding angiosperm relationships and the positioning of Ceratophylalles in a wider phylogenetic context.
Collapse
Affiliation(s)
- Samuel Nestor Meckoni
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology, TU Braunschweig, 38106, Braunschweig, Germany
| | - Benneth Nass
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology, TU Braunschweig, 38106, Braunschweig, Germany
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Prague, Czech Republic
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology, TU Braunschweig, 38106, Braunschweig, Germany.
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
22
|
Yang Y, Zhang X, Gao W, Zhang Y, Hou X. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83628-83642. [PMID: 37349490 DOI: 10.1007/s11356-023-28344-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Cyanobacterial blooms in lakes fueled by increasing eutrophication have garnered global attention, and high-precision remote sensing retrieval of chlorophyll-a (Chla) is essential for monitoring eutrophication. Previous studies have focused on the spectral features extracted from remote sensing images and their relationship with chlorophyll-a concentrations in water bodies, ignoring the texture features in remote sensing images which is beneficial to improve interpreting accuracy. This study explores the texture features in remote-sensing images. It proposes a retrieval method for estimating lake Chla concentration by combining spectral and texture features of remote sensing images. Remote sensing images from Landsat 5 TM and 8 OLI were used to extract spectral bands combination. The gray-level co-occurrence matrix (GLCM) of remote sensing images was used to obtain a total of 8 texture features; then, three texture indices were calculated using texture features. Finally, a random forest regression was used to establish a retrieval model of in situ Chla concentration from texture and spectral index. Results showed that texture features are significantly correlated with lake Chla concentration, and they can reflect the temporal and spatial distribution change of Chla. The retrieval model combining spectral and texture indices performs better (MAE = 15.22 μg·L-1, bias = 9.69%, MAPE = 47.09%) than the model without texture features (MAE = 15.76 μg·L-1, bias = 13.58%, MAPE = 49.44%). The proposed model performance varies in different Chla concentration ranges and is excellent in predicting higher concentrations. This study evaluates the potential of incorporating texture features of remote sensing images in lake water quality estimation and provides a novel remote sensing method to better estimate lake Chla concentration.
Collapse
Affiliation(s)
- Yufeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiang Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xikang Hou
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
23
|
Wei J, Li Q, Liu W, Zhang S, Xu H, Pei H. Changes of phytoplankton and water environment in a highly urbanized subtropical lake during the past ten years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162985. [PMID: 36958549 DOI: 10.1016/j.scitotenv.2023.162985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Phytoplankton and water quality changes in highly urbanized lakes affect the surrounding water safety. However, due to the complexity and variability of natural changes and human disturbances, it is difficult for multi-year research with yearly sampling frequency to cover accurate changes of phytoplankton and water environment or provide constructive suggestions for managers. Based on monthly monitoring data spanning 2011-2020 in a highly urbanized subtropical lake (Hongze Lake, China), Mann-Kendall test, ANOVA analysis and variation partitioning analysis were used to assess the changes of phytoplankton and water environment, and detect dynamic responses of phytoplankton to environmental changes. Rising water temperature during winter and spring, the decrease in nitrate, and the increase in water flow and turbidity were the main environmental characteristics from 2011 to 2020. The average and maximum abundance of Chlorophyta, Bacillariophyta, and Cryptophyta significantly declined, while changes in Cyanobacteria were characterized by an increase of N2-fixing filamentous cyanobacteria and a decrease of non-filamentous cyanobacteria. The rising water temperature during spring may promote the early growth of N2-fixing filamentous cyanobacteria. The decrease in nitrate mainly resulted in the decrease of Chlorophyta and non-filamentous cyanobacteria, and the increase of N2-fixing filamentous cyanobacteria during summer and autumn. The increase of turbidity and water flow inhibited the growth of Chlorophyta, Bacillariophyta, Cryptophyta, and non-filamentous cyanobacteria, but created favourable conditions for the growth of N2-fixing filamentous cyanobacteria. In summer and autumn, managers should focus on the proliferation of N2-fixing filamentous cyanobacteria when precipitation increase, nitrogen nutrients decrease, and non-filamentous cyanobacteria risk under opposite conditions. These findings greatly improved our understanding of the dynamic response of phytoplankton communities to natural changes and anthropogenic disturbances in the urbanized subtropical lakes, and can be used to develop lake management strategies.
Collapse
Affiliation(s)
- Jielin Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qian Li
- Xuzhou Department of Hydrology and Water Resources Survey Office in Jiangsu Province, Xuzhou 221000, China
| | - Wei Liu
- Huai'an Department of Hydrology and Water Resources Survey Office in Jiangsu Province, Huai'an 223005, China
| | - Shasha Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| |
Collapse
|
24
|
Buta B, Wiatkowski M, Gruss Ł, Tomczyk P, Kasperek R. Spatio-temporal evolution of eutrophication and water quality in the Turawa dam reservoir, Poland. Sci Rep 2023; 13:9880. [PMID: 37336929 DOI: 10.1038/s41598-023-36936-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
The objectives of the article are: to assess spatio-temporal evolution of eutrophication and water quality of the Turawa dam reservoir, located in south-western Poland on the Mała Panew River; to identify location and relationship between potential sources of physicochemical pollution related to the progressing process of eutrophication; and to determine trophic status and water quality indices of the selected research object. The analysis (Mann-Whitney U test, PCA, HCA, Spearman correlation matrix) showed a high susceptibility of the reservoir to eutrophication processes, especially due to the influence of dangerous loads of compounds emerging from areas with high tourist intensity and pollutants flowing from the Mała Panew River. The parameters deteriorating the ecological status were TP, DO, BOD5, and COD. Considering the cumulative results of water quality indices for the period 1998-2020, the average water quality was in classes II or III. A noticeable deterioration appeared in water quality for the years 2016-2020, which proves the progressing eutrophication in the Turawa reservoir. In 1998-2020, the reservoir was classified as eutrophic or mesoeutrophic based on the calculated three trophic status indices. This article would help in developing a strategy for dealing with water blooms, a reliable system for monitoring pressures causing eutrophication, and optimal technologies for the reconstruction of multifunctional reservoirs.
Collapse
Affiliation(s)
- Bogna Buta
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| | - Mirosław Wiatkowski
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| | - Łukasz Gruss
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| | - Paweł Tomczyk
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland.
| | - Robert Kasperek
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| |
Collapse
|
25
|
He Y, Hou J, Qiu Y, Ouyang K, Li D, Li L. Microcystin-LR immersion caused sequential endocrine disruption and growth inhibition in zebrafish (Danio rerio) from fertilization to sexual differentiation completion. Toxicology 2023:153569. [PMID: 37295766 DOI: 10.1016/j.tox.2023.153569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic congener and is also one of the most commonly found. Recent studies have demonstrated that MC-LR can disrupt growth and endocrine in fish, but how it works at the stage of the sex differentiation period had not been determined to date. In this study, zebrafish (Danio rerio) embryos were exposed to MC-LR (0 and 10μg/L), and sampled at 14, 28, and 42 days post fertilization (dpf), respectively. The results demonstrated that MC-LR caused the growth inhibition of zebrafish at 42 dpf. The expression levels of genes related to the growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes, as well as the levels of hormone 3,5,3'- Triiodothyronine (T3) and thyroxine (T4), were significantly decreased at all time points. A Significant decrease in the ratio of testosterone and estradiol (T/E2) were detected at 28 and 42 dpf in MC-LR group along with changes in genes related to the hypothalamic-pituitary-gonadal (HPG) axis. The result of sex ratio showed that the percentage of females was up to 61.84%, indicating a estrogenic effect induced by MC-LR. The significant changes on hormone levels and gene transcripts occurred mainly in the stage of sex differentiation. The correlation analysis further suggested that key cross-talks among three endocrine axes may be the growth hormone releasing hormone (GHRH), Transthyretin (TTR) and gonadotropin releasing hormone (GnRH) signaling molecules. Overall, our findings provide a new insight for understanding the mechanisms by which MC-LR affects fish growth and reproduction during gonadal development.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jie Hou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China.
| |
Collapse
|
26
|
Li Z, Sun Z, Zhang L, Zhan N, Lou C, Lian J. Investigation of water quality and aquatic ecological succession of a newly constructed river replenished by reclaimed water in Beijing. Heliyon 2023; 9:e17045. [PMID: 37484330 PMCID: PMC10361104 DOI: 10.1016/j.heliyon.2023.e17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
The potential to create new ecosystems in rivers is possible through the use of reclaimed water as a replenishment source, although the long-term effects of this method are unknown. In this study, the water quality and aquatic ecological evolution of a newly constructed river replenished by reclaimed water in Beijing (the Jing River) were investigated, and the conventional water quality, phytoplankton indicators, and submerged plant growth conditions from October 2018 to December 2020 were analyzed. Spearman's correlation and redundancy analysis between possible influential environmental factors and algal indicators were conducted. The results show that the major water quality indicators could meet the water quality standards for landscape water. There were seven phyla present, including 322 species of phytoplankton. The phytoplankton density increased, followed by a decreasing trend. Phytoplankton densities at each monitoring site reached 10 × 106 to 25 × 106 cells/L in 2019 before decreasing in 2020, then ranging from 8 × 106 to 20 × 106 cells/L. Phytoplankton growth was influenced by changing water quality and ecosystems. Consequently, the submerged plant coverage rate gradually increased from 2018 (0%) to 2020 (26.27%-37.06%), as did biodiversity. Through the implementation of ecological restoration measures in the Jing River, the reclaimed water environment evolved into a more natural water environment, which could provide some reference for similar areas to use reclaimed water as a water replenishment source.
Collapse
Affiliation(s)
- Zhaoxin Li
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, Hebei Province, China
- Hebei Key Laboratory of Intelligent Water Conservancy, Handan 056038, Hebei Province, China
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Zhiyan Sun
- Tianjin Research Center of Urban Management, Tianjin 300201, China
| | - Lei Zhang
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Nan Zhan
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Chunhua Lou
- Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Jijian Lian
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, Hebei Province, China
- Hebei Key Laboratory of Intelligent Water Conservancy, Handan 056038, Hebei Province, China
| |
Collapse
|
27
|
Leng M, Feng L, Wu X, Ge X, Lin X, Song S, Xu R, Sun Z. Assessment of Water Eutrophication at Bao'an Lake in the Middle Reaches of the Yangtze River Based on Multiple Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4615. [PMID: 36901625 PMCID: PMC10002378 DOI: 10.3390/ijerph20054615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Based on the monthly monitoring of Bao'an Lake in Hubei Province from 2018 to 2020, the eutrophication level of Bao'an Lake in the middle reaches of the Yangtze River is investigated using the comprehensive trophic level index (TLI), chromophoric dissolved organic matter (CDOM) absorption coefficient, and the phytoplankton water quality biological method. The influencing factors are then identified. The results demonstrate that the overall water quality of Bao'an Lake remained at levels III-V during 2018-2020. Due to different eutrophication assessment methods, the results are different, but all show that Bao'an Lake is in a eutrophication state as a whole. The eutrophication level of Bao'an Lake is observed to vary with time, exhibiting an increasing then decreasing trend between 2018-2020, while levels are high in summer and autumn, and low in winter and spring. Moreover, the eutrophication level of Bao'an Lake presents an obviously varying spatial distribution. Potamogeton crispus is the dominant species of the Bao'an Lake, the water quality is good in spring when Potamogeton crispus vigorously grows, but poor in summer and autumn. The permanganate index (CODMn) and total phosphorous (TP), total nitrogen (TN), and chlorophyll a (Chl-a) contents are identified as the main influencing factors of the eutrophication level of Bao'an Lake, with a significant relationship observed between Chl-a and TP (p < 0.01). The above results provide a solid theoretical basis for the ecological restoration of Bao'an Lake.
Collapse
Affiliation(s)
- Mingkai Leng
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Lian Feng
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xiaodong Wu
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Xuguang Ge
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xiaowen Lin
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Shixing Song
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Rui Xu
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| | - Zhenhua Sun
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
28
|
Accurate Dissolved Oxygen Prediction for Aquaculture Using Stacked Ensemble Machine Learning Model. NATIONAL ACADEMY SCIENCE LETTERS 2023. [DOI: 10.1007/s40009-023-01213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
29
|
Duan Y, Li Q, Zhou J, Zhao H, Zhao Z, Wang L, Luo M, Du J, Dong Z. Studies on the molecular level changes and potential resistance mechanism of Coreius guichenoti under temperature stimulation. Front Genet 2022; 13:1015505. [PMID: 36263436 PMCID: PMC9574000 DOI: 10.3389/fgene.2022.1015505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we used transcriptome and proteome technology to analyze molecular level changes in tissues of Coreius guichenoti cultured at high temperature (HT) and low temperature (LT). We also screened for specific anti-stress genes and proteins and evaluated the relationships between them. We identified 201,803 unigenes and 10,623 proteins. Compared with the normal temperature (NT), 408 genes and 1,204 proteins were up- or down-regulated in brain tissues, respectively, at HT, and the numbers were 8 and 149 at LT. In gill tissues, the numbers were 101 and 1,745 at HT and 27 and 511 at LT. In gill tissues at both temperatures, the degree of down-regulation (average, HT 204.67-fold, LT 443.13-fold) was much greater than that of up-regulation (average, HT 28.69-fold, LT 17.68-fold). The protein expression in brain (average, up 52.67-fold, down 13.54-fold) and gill (average, up 73.02-fold, down 12.92-fold) tissues increased more at HT than at LT. The protein expression in brain (up 3.77-fold, down 4.79-fold) tissues decreased more at LT than at HT, whereas the protein expression in gill (up 8.64-fold, down 4.35-fold) tissues was up-regulated more at LT than at HT. At HT, brain tissues were mainly enriched in pathways related to metabolism and DNA repair; at LT, they were mainly enriched in cancer-related pathways. At both temperatures, gill tissues were mainly enriched in pathways related to cell proliferation, apoptosis, immunity, and inflammation. Additionally, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed more differentially expressed proteins in gill tissues than in brain tissues at HT and LT, and temperature stimulation led to the strengthening of metabolic pathways in both tissues. Of the 96 genes we identified as potentially being highly related to temperature stress (59 from transcriptome and 38 from proteome data), we detected heat shock protein 70 in both the transcriptome and proteome. Our results improved our understanding of the differential relationship between gene expression and protein expression in C. guichenoti. Identifying important temperature stress genes will help lay a foundation for cultivating C. guichenoti, and even other fish species, that are resistant to HT or LT.
Collapse
Affiliation(s)
- Yuanliang Duan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- *Correspondence: Zaijie Dong,
| |
Collapse
|
30
|
Lu W, Zhang X, Zhang Y, Wang Q, Wei Y, Ma B. Synergistic simultaneous endogenous partial denitrification/anammox (EPDA) and denitrifying dephosphatation for advanced nitrogen and phosphorus removal in a complete biofilm system. BIORESOURCE TECHNOLOGY 2022; 358:127378. [PMID: 35644451 DOI: 10.1016/j.biortech.2022.127378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To achieve simultaneous biological nitrogen and phosphorus removal from municipal wastewater, the endogenous partial denitrification/anammox (EPDA) was combined with denitrifying dephosphatation in a complete biofilm reactor. Advanced nitrogen and phosphorus removal were achieved with effluent total nitrogen (TN) and PO43--P concentrations of 7.77 ± 0.33 mg/L and 0.35 ± 0.10 mg/L, respectively. Anammox took a major role in the system, accounting for 76 ± 7% of nitrogen removal. 16S rRNA high-throughput sequencing results showed that the anammox bacteria co-existed with the denitrifying glycogen accumulating organisms (DGAOs) and the denitrifying phosphorus accumulating organisms (DPAOs). Anammox bacteria were mainly distributed in the inner layer, while DGAOs and DPAOs existed in the outer layer of EPDA biofilms. Furthermore, based on the EPDA biofilm system, a promising advanced nitrogen and phosphorus removal process was suggested to achieve lower requirements for energy and reagent consumption.
Collapse
Affiliation(s)
- Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Xiangyu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
31
|
Bayu AB, Abeto Amibo T, Beyan SM. Adsorptive Capacity of Calcinated Hen Eggshell Blended with Silica Gel for Removal of Lead II Ions from Aqueous Media: Kinetics and Equilibrium Studies. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:2882546. [PMID: 35371268 PMCID: PMC8975639 DOI: 10.1155/2022/2882546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
Abstract
In this study, a description was given for the adsorbent CaSiO3 for allure proximate examination and determination like particle density, main part density, and porosity analysis. This is performed before management of batch adsorption experiments. Both kinetics and balance studies for the adsorbent were examined. The influences of various process parameters like lead concentration, pH, adsorbent dosage, and contact temporal length for process removal were explored. The removal efficiency of CaO from eggshell was enhanced to increase after mixing it with silica coagulate compared with added scholar's findings for the same limit. The maximum removal efficiency (99.58%) was obtained by limiting the pH, adsorbent dosage, initial lead concentration, and contact time at 4, 1.8 g, 35 g/L, and 140 minutes, respectively. Thus, blending CaO from eggshells with silica gel can increase the adsorption competency of CaO. Lead removal is well integrated into the Langmuir isotherm model with an equivalent factor of 0.991. The kinetic data of adsorption fit well into a pseudo-first-order model with a correlation coefficient of 0.90111. The pseudo-second-order model was the rate-determining step involved in the lead adsorption process for calcium silicate (CaSiO3) adsorbents.
Collapse
Affiliation(s)
- Abreham Bekele Bayu
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, P.O. Box-378, Ethiopia
| | - Temesgen Abeto Amibo
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, P.O. Box-378, Ethiopia
| | - Surafel Mustefa Beyan
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, Jimma, P.O. Box-378, Ethiopia
| |
Collapse
|
32
|
Zhang X, Ding S, Lv H, Cui G, Yang M, Wang Y, Guan T, Li XD. Microbial controls on heavy metals and nutrients simultaneous release in a seasonally stratified reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1937-1948. [PMID: 34363164 DOI: 10.1007/s11356-021-15776-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The eutrophication of reservoirs can change the physicochemical parameters of water, thus affecting the migration and transformation of heavy metals. At present, there is insufficient research on the coupling mechanisms between nutrients and heavy metals, especially between heavy metals in suspended particles. In this paper, spatial and temporal distribution characteristics of nutrients dissolved heavy metals, and heavy metals in suspended particles were analyzed in a seasonally stratified reservoir. Combined with the nitrogen and phosphorus biogeochemical process, the coupling mechanisms between heavy metals and nutrients were discussed. The results showed that the Aha Reservoir had temperature and dissolved oxygen stratification in April and July. The reduction and dissolution of Fe and Mn oxide/hydroxide and the resuspension of sediments might result in a simultaneous increase in the concentrations of nutrients, dissolved heavy metals and heavy metals in suspended particles in hypolimnion in July and October. In the presence of dissimilatory iron-reducing bacteria (DRIB), the dissolution of iron-bound phosphorus in sediments and suspended particulate matter (SPM) might lead to the simultaneous release of iron and phosphorus into the water. The dissolution of metal sulfides in the sediments and SPM under the action of dissimilatory nitrate reduction to ammonium (DNRA) bacteria might lead to the simultaneous release of ammonia nitrogen and heavy metals into the water. Due to the coupling between nitrogen and phosphorus and heavy metals, seasonal stratified reservoir may face the risk of periodic simultaneous pollution of eutrophication and heavy metals in summer and autumn. This research provides theoretical support for the treatment of heavy metal and eutrophication combined pollution in karst areas.
Collapse
Affiliation(s)
- Xuecheng Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Environmental Geochemistry, Guiyang, 550081, China.
| | - Hong Lv
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Gaoyang Cui
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
- The College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Mengdi Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yiyao Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Tianhao Guan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
33
|
Shen C, Zhao Y, Li Y, Liu R, Wang J, Yang Y. Treating carbon-limited wastewater by DWTR and woodchip augmented floating constructed wetlands. CHEMOSPHERE 2021; 285:131331. [PMID: 34237501 DOI: 10.1016/j.chemosphere.2021.131331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Floating constructed wetlands (FCWs) have attained tremendous popularity for water purification purposes. However, FCW functions establishment in nutrients removal from carbon-limited wastewater, especially in cold weather, is still a challenge. Here, two drinking water treatment residual (DWTR) based biocarriers (B-I: DWTR cakes, B-II: DWTR cakes combined with woodchips) have been augmented into FCW to enhance the nutrients (N and P) removal performance. Compared to the traditional FCW, the intensified FCWs simultaneously achieved higher N and P removal efficiencies, with average pollutants removal of 52.16 ± 11.51% for TN and 92.72 ± 1.61% for TP in FCW-I and 57.65 ± 9.43% for TN and 92.17 ± 2.55% for TP in FCW-II, respectively, while their removal in FCW-III of 27.74 ± 7.11% for TN and 17.91 ± 9.27% for TP. B-II performed best in overcoming the negative influence of low temperature in nutrients removal. Mass balance budget indicated that most P was enriched in DWTR based biocarriers. Thus it is feasible to recycle and recover P from the surface water. Furthermore, P in the sediment can be changed from active P to stable P, mitigating the internal P release risk. This study can help to expand the understanding of the intensified FCWs and promote the practical application of FCWs.
Collapse
Affiliation(s)
- Cheng Shen
- School of Environment and Natural Resources, Zhejiang University Science & Technology, Zhejiang Prov. Key Lab. of Recycling & Ecotreatment Waste, Hangzhou, 310000, Zhejiang, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Yan Li
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310000, Zhejiang, PR China
| | - Ranbin Liu
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Jie Wang
- School of Environment and Natural Resources, Zhejiang University Science & Technology, Zhejiang Prov. Key Lab. of Recycling & Ecotreatment Waste, Hangzhou, 310000, Zhejiang, PR China
| | - Yan Yang
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|