1
|
Zhang Y, Ji Y, Liu F, Wang Y, Feng C, Zhou Z, Zhang Z, Han L, Li J, Wang M, Li L. Pseudomonas sp. Strain ADAl3-4 Enhances Aluminum Tolerance in Alfalfa ( Medicago sativa). Int J Mol Sci 2025; 26:4919. [PMID: 40430057 PMCID: PMC12111897 DOI: 10.3390/ijms26104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Aluminum toxicity severely inhibits root elongation and nutrient uptake, causing global agricultural yield losses. Dissolved Al3+ are accumulating in plants and subsequently entering food chains via crops and forage plants. Chronic dietary exposure to Al3+ poses a risk to human health. In this study, Pseudomonas sp. strain ADAl3-4, isolated from plant rhizosphere soil, significantly enhanced plant development and biomass. Phenotypic validation using Arabidopsis mutants showed that strain ADAl3-4 regulates plant growth and development under aluminum stress by reprogramming the cell cycle, regulating auxin and ion homeostasis, and enhancing the root absorption of Al3+ from the soil. Transcriptomic and biochemical analyses showed that strain ADAl3-4 promotes plant growth via regulating signal transduction, phytohormone biosynthesis, flavonoid biosynthesis, and antioxidant capacity, etc., under aluminum stress. Our findings indicate that Pseudomonas sp. strain ADAl3-4 enhances plant development and stress resilience under Al3+ toxicity through a coordinated multi-dimensional regulatory network. Furthermore, strain ADAl3-4 promoted the root absorption of aluminum rather than the transportation of Al to the aerial part, endowing it with application prospects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lixin Li
- Key Laboratory of Saline–Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (Y.J.); (F.L.); (Y.W.); (C.F.); (Z.Z.); (Z.Z.); (L.H.); (J.L.); (M.W.)
| |
Collapse
|
2
|
Mensonas VJ, Kleizaitė V, Leistrumaitė A, Šiukšta R. Early Seedling Screening Reveals Unidentified Al Resistance Mechanisms in Lithuanian Barley Cultivars. Int J Mol Sci 2025; 26:3803. [PMID: 40332449 PMCID: PMC12028139 DOI: 10.3390/ijms26083803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Aluminum toxicity in acidic soils represents a significant environmental stressor that affects yields worldwide and is only expected to worsen. Breeding resistant varieties remains the most viable solution; however, fast and robust procedures to determine cultivar viability must be developed and applied to promising genotypes. This study explored historical and modern Lithuanian-bred barley cultivars using morphometrical and biochemical markers for Al resistance and sequence and expression analyses of potential candidate genes. Morphometric seedling measurements (relative root length reduction -13.65 ± 0.33% (p < 0.001) and root tolerance index 0.86 ± 0.44 after 72 h at 8 mM Al stress) revealed the modern cv. 'Ema DS' to be the most Al resistant, while biochemical assays offered a poor distinction between the Al-resistant and sensitive cultivars. Thus, we determined that morphometric parameters were more effective in the early screening for barley Al resistance. The genetic screening of well-established Al resistance markers in the barley citrate transporter HvAACT1 revealed a mismatch between the observed barley phenotypes and genotypes. Further testing was conducted through expression analyses of HvAACT1 and seven aquaporin family genes, which revealed a correlation between the best empirical performance in cv. 'Ema DS' and a high HvAACT1 (2.02 fold change, p < 0.05) expression, despite the lack of established genetic markers, as well as a stress-induced significant upregulation of aquaporin TIP4;1 (2.45 fold change, p < 0.05), suggesting previously undiscovered regulatory mechanisms of external and internal detoxification influencing Al resistance in Lithuanian barley cultivars, as well as potential future candidates for Al-resistant barley breeding programs.
Collapse
Affiliation(s)
- Vilius Jurgis Mensonas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, 10257 Vilnius, Lithuania; (V.J.M.)
| | - Violeta Kleizaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, 10257 Vilnius, Lithuania; (V.J.M.)
| | - Algė Leistrumaitė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Institutas Ave. 1, Akademija, 58344 Kėdainiai, Lithuania
| | - Raimondas Šiukšta
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekis Ave. 7, 10257 Vilnius, Lithuania; (V.J.M.)
| |
Collapse
|
3
|
Allam G, Sakariyahu SK, McDowell T, Pitambar TA, Papadopoulos Y, Bernards MA, Hannoufa A. miR156 Is a Negative Regulator of Aluminum Response in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2025; 14:958. [PMID: 40265915 PMCID: PMC11945701 DOI: 10.3390/plants14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aluminum (Al) toxicity is a serious environmental constraint facing crop production in acidic soils, primarily due to the oxidative damage it causes to plant tissues. Alfalfa (Medicago sativa), a globally important forage crop, is highly susceptible to Al-induced stress, necessitating the development of Al-tolerant cultivars for sustainable forage production. In this study, we investigated the regulatory role of miR156 in Al stress response in alfalfa. Transcript analysis revealed significant downregulation of miR156 in alfalfa roots after 8 h of Al exposure, suggesting a negative role for miR156 in response to Al. To further investigate the role of miR156 in regulating agronomic traits and alfalfa's Al tolerance, we utilized the short tandem target mimic (STTM) method to silence miR156 in alfalfa (MsSTTM156), which led to an upregulation of SQUAMOSA PROMOTER BINDING-LIKE (SPL) target genes, albeit with variable miR156 dose-dependent effects across different transgenic genotypes. Morphological characterization of MsSTTM156 plants revealed significant negative changes in root architecture, root and shoot biomass, as well as flowering time. Under Al stress, overexpression of miR156 in alfalfa (MsmiR156OE) resulted in stunted growth and reduced biomass, whereas moderate MsmiR156 silencing enhanced root dry weight and increased stem basal diameter. In contrast, MsmiR156OE reduced plant height, stem basal diameter, shoot branching, and overall biomass under Al stress conditions. At the molecular level, silencing miR156 modulated the transcription of cell wall-related genes linked to Al tolerance, such as polygalacturonase 1(MsPG1) and polygalacturonase 4 (MsPG4). Furthermore, miR156 influenced the expression of indole-3-acetic acid (IAA) transport-related genes auxin transporter-like protein (MsAUX1) and auxin efflux carrier components 2 (MsPIN2), with MsSTTM156 and MsmiR156OE plants showing lower and higher transcript levels, respectively, upon Al exposure. These findings reveal the multi-layered role of miR156 in mediating Al tolerance, providing valuable insights into the genetic strategies that regulate response to Al stress in alfalfa.
Collapse
Affiliation(s)
- Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Solihu K. Sakariyahu
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
| | - Tevon A. Pitambar
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | | | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| |
Collapse
|
4
|
Espinola EC, Cabreros MMN, Redillas MCFR. Morpho-Physiological Adaptations of Rice Cultivars Under Heavy Metal Stress: A Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:189. [PMID: 40003598 PMCID: PMC11856324 DOI: 10.3390/life15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Soil contamination, including in rice fields, arises from a variety of natural processes and anthropogenic activities, leading to an accumulation of heavy metals. While extensive research has addressed the bioaccumulation of heavy metals in rice, only limited systematic reviews have examined their specific impact on the morpho-physiological traits of rice plants. This review aims to provide a comprehensive synthesis of current studies detailing the rice cultivars, types of heavy metals investigated, study designs, sampling locations, and experimental sites while systematically analyzing the morphological and physiological responses of rice cultivars to heavy metal stress. Studies show that morphological traits generally exhibit a decline under heavy metal exposure. Physiologically, rice cultivars tend to show decreased total chlorophyll and carotenoid levels, along with increased levels of malondialdehyde (MDA), hydrogen peroxide (H₂O₂), and antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and proline. These findings suggest that plant genotype, type of heavy metal, and intensity of stress significantly modulate the morphological and physiological responses of rice, highlighting critical areas for further research in heavy metal stress tolerance in rice cultivars.
Collapse
Affiliation(s)
- Esmeth C. Espinola
- Science Education Department, Br. Andrew Gonzales FSC College of Education, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines;
| | - Monica Maricris N. Cabreros
- Department of Biology, College of Science, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines;
| | | |
Collapse
|
5
|
Shi Y, Zhang D, Liang R, Xiao D, Wang A, He L, Zhan J. Knockdown of Adenosine 5'-Triphosphate-Dependent Caseinolytic Protease Proteolytic Subunit 6 Enhances Aluminum Tolerance in Peanut Plants ( Arachis hypogea L.). Int J Mol Sci 2024; 25:10416. [PMID: 39408744 PMCID: PMC11476885 DOI: 10.3390/ijms251910416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Aluminum (Al3+) toxicity in acidic soils reduces root growth and can lead to a considerable reduction in peanut plants (Arachis hypogea L.). The caseinolytic protease (Clp) system plays the key role in abiotic stress response. However, it is still unknown whether it is involved in peanut response to Al3+ stress. The results from this study showed that Adenosine 5'-triphosphate (ATP)-dependent caseinolytic protease proteolytic subunit 6 (AhClpP6) in peanut plants was involved in the Al3 stress response through its effects on leaf photosynthesis. The AhClpP6 expression levels in the leaf and stem significantly increased with the Al3+ treatment times. Knockdown AhClpP6 peanut lines accumulated significantly more Al3+ when exposed to Al3+ stress, which reduced leaf photosynthesis. Furthermore, in response to Al3+ treatment, knockdown of AhClpP6 resulted in a flattened shape of chloroplasts, disordered and flattened thylakoid, and accumulating more starch grains than those of the wild-type (WT) peanut lines. Taken together, our results suggest that AhClpP6 regulates Al3+ tolerance by maintaining chloroplast integrity and enhancing photosynthesis.
Collapse
Affiliation(s)
- Yusun Shi
- College of Agriculture, Guangxi University, Nanning 530004, China; (Y.S.); (D.Z.); (R.L.); (D.X.); (A.W.)
| | - Dayue Zhang
- College of Agriculture, Guangxi University, Nanning 530004, China; (Y.S.); (D.Z.); (R.L.); (D.X.); (A.W.)
| | - Ronghua Liang
- College of Agriculture, Guangxi University, Nanning 530004, China; (Y.S.); (D.Z.); (R.L.); (D.X.); (A.W.)
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning 530004, China; (Y.S.); (D.Z.); (R.L.); (D.X.); (A.W.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning 530004, China; (Y.S.); (D.Z.); (R.L.); (D.X.); (A.W.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning 530004, China; (Y.S.); (D.Z.); (R.L.); (D.X.); (A.W.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning 530004, China; (Y.S.); (D.Z.); (R.L.); (D.X.); (A.W.)
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Tisarum R, Theerawitaya C, Praseartkul P, Chungloo D, Ullah H, Himanshu SK, Datta A, Cha-Um S. Screening cotton genotypes for their drought tolerance ability based on the expression level of dehydration-responsive element-binding protein and proline biosynthesis-related genes and morpho-physio-biochemical responses. PROTOPLASMA 2024; 261:783-798. [PMID: 38376598 DOI: 10.1007/s00709-024-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Drought stress adversely affects growth, development, productivity, and fiber quality of cotton (Gossypium hirsutum L). Breeding strategies to enhance drought tolerance require an improved knowledge of plant drought responses necessitating proper identification of drought-tolerant genotypes of crops, including cotton. The objective of this study was to classify the selected cotton genotypes for their drought tolerance ability based on morpho-physio-biochemical traits using Hierarchical Ward's cluster analysis. Five genotypes of cotton (Takfa 3, Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5) were selected as plant materials, and were grown under well-watered (WW; 98 ± 2% field capacity) and water-deficit (WD; 50 ± 2% field capacity) conditions for 16 days during the flower initiation stage. Data on morpho-physio-biochemical parameters and gene expression levels for these parameters were collected, and subsequently genotypes were classified either as a drought tolerant or drought susceptible one. Upregulation of GhPRP (proline-rich protein), GhP5CS (Δ1-pyrroline-5-carboxylate synthetase), and GhP5CR (Δ1-pyrroline-5-carboxylate reductase) in relation to free proline enrichment was observed in Takfa 3 genotype under WD condition. An accumulation of free proline, total soluble sugar, and potassium in plants under WD conditions was detected, which played a key role as major osmolytes controlling cellular osmotic potential. Magnesium and calcium concentrations were also enriched in leaves under WD conditions, functioning as essential elements and regulating photosynthetic abilities. Leaf greenness, net photosynthetic rate, stomatal conductance, and transpiration rate were also declined under WD conditions, leading to growth retardation, especially aboveground traits of Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5 genotypes. An increase in leaf temperature (1.1 - 4.0 °C) and crop water stress index (CWSI > 0.75) in relation to stomatal closure and reduced transpiration rate was recorded in cotton genotypes under WD conditions compared with WW conditions. Based on the increase of free proline, soluble sugar, leaf temperature, and CWSI, as well as the decrease of aboveground growth traits and physiological attributes, five genotypes were categorized into two cluster groups: drought tolerant (Takfa 3) and drought susceptible (Takfa 6, Takfa 7, Takfa 84-4, and Takfa 86-5). The identified drought-tolerant cotton genotype, namely, Takfa 3, may be grown in areas experiencing drought conditions. It is recommended to further validate the yield traits of Takfa 3 under rainfed field conditions in drought-prone environments.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Hayat Ullah
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Sushil Kumar Himanshu
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Belachew KY, Skovbjerg CK, Andersen SU, Stoddard FL. Phenotyping revealed tolerance traits and genotypes for acidity and aluminum toxicity in European Vicia faba L. PHYSIOLOGIA PLANTARUM 2024; 176:e14404. [PMID: 38922894 DOI: 10.1111/ppl.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.
Collapse
Affiliation(s)
- Kiflemariam Y Belachew
- Viikki Plant Science Centre, Department of Agricultural Sciences, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Department of Horticulture, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Frederick L Stoddard
- Viikki Plant Science Centre, Department of Agricultural Sciences, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Guo C, Shabala S, Chen ZH, Zhou M, Zhao C. Aluminium tolerance and stomata operation: Towards optimising crop performance in acid soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108626. [PMID: 38615443 DOI: 10.1016/j.plaphy.2024.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Stomatal operation is crucial for optimising plant water and gas exchange and represents a major trait conferring abiotic stress tolerance in plants. About 56% of agricultural land around the globe is classified as acidic, and Al toxicity is a major limiting factor affecting plant performance in such soils. While most of the research work in the field discusses the impact of major abiotic stresses such as drought or salinity on stomatal operation, the impact of toxic metals and, specifically aluminium (Al) on stomatal operation receives much less attention. We aim to fill this knowledge gap by summarizing the current knowledge of the adverse effects of acid soils on plant stomatal development and operation. We summarised the knowledge of stomatal responses to both long-term and transient Al exposure, explored molecular mechanisms underlying plant adaptations to Al toxicity, and elucidated regulatory networks that alleviate Al toxicity. It is shown that Al-induced stomatal closure involves regulations of core stomatal signalling components, such as ROS, NO, and CO2 and key elements of ABA signalling. We also discuss possible targets and pathway to modify stomatal operation in plants grown in acid soils thus reducing the impact of Al toxicity on plant growth and yield.
Collapse
Affiliation(s)
- Ce Guo
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; School of Biological Science, University of Western Australia, Crawley, 6009, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia.
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, 7250, Australia.
| |
Collapse
|
9
|
Cha-Um K, Juansawang A, Tisarum R, Praseartkul P, Sotesaritkul T, Singh HP, Cha-Um S. Bioaccumulation efficacy and physio-morphological adaptations in response to iron and aluminium contamination of Indian camphorweed (Pluchea indica L.) using different growth substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23623-23637. [PMID: 38418794 DOI: 10.1007/s11356-024-32686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to assess the removal capability of Fe/Al contamination of Indian camphorweed (Pluchea indica; hereafter, P. indica) using different growth substrates (100% sand, gardening soil, vermiculite, and zeolite). In addition, the study aimed at observing the physio-morphological adaptation strategies of P. indica under excess Fe/Al levels in a controlled greenhouse environment. After a 4-week treatment, P. indica plants under excess Fe in the 100% sand substrate exhibited signs of decay and eventually death. In contrast, the growth performances of P. indica under gardening soil substrate remained sustained even when exposed to Fe/Al stress. Under zeolite substrate, Fe in the root tissues was 23.1 and 34.7 mg g-1 DW after 1 and 4 weeks of incubation, respectively. In addition, Al in the root tissues also increased to 1.54 mg g-1 DW after 1 week and 1.59 mg g-1 DW after 4 weeks, when subjected to 20 mM Al treatment. Zeolite was observed to be a promising substrate to regulate the uptake of Fe (3.31 mg plant-1) and Al (0.51 mg plant-1) by the root tissues. The restriction of Fe and Al in the root and a low translocation to the leaf organ was indicated by a low translocation factor (< 1.0). High Fe concentrations in the root and leaf tissues negatively affected root elongation, and the net photosynthetic rate decreased by > 40% compared to positive control. Gas exchange parameters and leaf temperature were found the most sensitive to Fe/Al stress. Moreover, the limited transpiration rate under Fe/Al stress caused an increase of the leaf temperature and crop stress index. The findings suggest that P. indica grown using zeolite substrate may serve as a good model system for constructed wetlands, storing excess Al in the root tissues without any significant growth inhibition.
Collapse
Affiliation(s)
- Kwankhao Cha-Um
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Araya Juansawang
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
10
|
Chungloo D, Tisarum R, Pinruan U, Sotesaritkul T, Saimi K, Praseartkul P, Himanshu SK, Datta A, Cha-Um S. Alleviation of water-deficit stress in turmeric plant ( Curcuma longa L.) using phosphate solubilizing rhizo-microbes inoculation. 3 Biotech 2024; 14:69. [PMID: 38362591 PMCID: PMC10864243 DOI: 10.1007/s13205-024-03922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
The objective of this study was to assess the effects of phosphate solubilizing rhizo-microbes inoculants on nutrient balance, physiological adaptation, growth characteristics, and rhizome yield traits as well as curcuminoids yield at the secondary-rhizome initiation stage of turmeric plants, subsequently subjected to water-deficit (WD) stress. Phosphorus contents in the leaf tissues of Talaromyces aff. macrosporus and Burkholderia sp. (Bruk) inoculated plants peaked at 0.33 and 0.29 mg g-1 DW, respectively, under well-watered (WW) conditions; however, phosphorus contents declined when subjected to WD conditions (p ≤ 0.05). Similarly, potassium and calcium contents reached their maximum values at 5.33 and 3.47 mg g-1 DW, respectively, in Burk inoculated plants under WW conditions, which contributed to sustained rhizome fresh weight even when exposed to WD conditions (p ≤ 0.05). There was an increase in free proline content in T. aff. macrosporus and Burk inoculated plants under WD conditions, which played a crucial role in controlling leaf osmotic potential, thereby stabilizing leaf greenness and maximum quantum yield of PSII. As indicators of drought stress, there were noticeable restrictions in stomatal gas exchange parameters, including net photosynthetic rate, stomatal conductance, and transpiration rate, accompanied by an increase in leaf temperature. These changes resulted in reduced total soluble sugar levels. Interestingly, total curcuminoids and curcuminoids yield in Burk inoculated plants under WD conditions were retained, especially in relation to rhizome biomass. Burk inoculation in turmeric plants is recommended as a promising technique as it alleviates water-deficit stress, sustains rhizome biomass, and stabilizes curcuminoids yield. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03922-x.
Collapse
Affiliation(s)
- Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Umpawa Pinruan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Kewalee Saimi
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Sushil Kumar Himanshu
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120 Thailand
| |
Collapse
|
11
|
Asha JF, Ahmed SF, Biswas A, Bony ZF, Chowdhury MR, Sarker BC. Impacts of long-term irrigation with coalmine effluent contaminated water on trace metal contamination of topsoil and potato tubers in Dinajpur area, Bangladesh. Heliyon 2024; 10:e24100. [PMID: 38293543 PMCID: PMC10827468 DOI: 10.1016/j.heliyon.2024.e24100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Rapid depletion of groundwater and climate change mediated shifting precipitation pattern is forcing farmers to look for alternative irrigation options like wastewater. However, routine irrigation with trace metal contaminated wastewaters could potentially pollute soil as well as cause health risks through the consumption of food products grown in contaminated soil. Thus, the present study aimed to investigate the trace metals build-up status in topsoil and potato (Solanum tuberosum L.) tubers upon continuous irrigation with coalmine effluent contaminated wastewater compared to irrigation with groundwater and surface water over three consecutive years. Soil pollution status and human health risk associated with consumption of potato tubers grown on wastewater-irrigated soil was also assessed in this study. Three separate experimental sites differing in irrigation source (groundwater, surface water, and coalmine wastewater) were selected near Barapukuria Coal Mining Company Limited located at Parbatipur upazilla of Dinajpur district, Bangladesh. Nine trace metals namely arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were estimated. Results showed significantly higher trace metal content in both soil and potato tubers due to wastewater irrigation. Wastewater suitability for irrigation regarding Cd, Cr, Cu, Fe, Ni and Pb were off the permissible level although the soil contamination with trace metals and their levels in potato tubers remained within the safety limit. Health risk assessment revealed that, consumption of potato tubers grown in wastewater-irrigated soil remained safe although health risk associated with Cr was almost at the border. The study exclusively highlighted the core massage that, trace metal contamination of both soil and potatoes cultivated in them was increasing alarmingly due to three years of wastewater-irrigation. Although the extent of contamination was below critical limit, it can potentially become hazardous in years to come unless wastewater-irrigation is checked. This study was successful to provide valuable insights regarding the potential environmental and human health threats that might arise due to unmindful irrigation of contaminated coalmine wastewater. Besides, this study should prove useful in strategizing safety measures for cropping under trace metal contaminated soils and for planning industrial effluent disposal to avoid agricultural soil contamination.
Collapse
Affiliation(s)
- Jannatul Ferdoushi Asha
- Department of Agricultural Chemistry, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| | - Sheikh Faruk Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Arindam Biswas
- Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur, 1701, Bangladesh
| | - Zannatul Ferdaous Bony
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md. Rizvi Chowdhury
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Bikash Chandra Sarker
- Department of Agricultural Chemistry, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200, Bangladesh
| |
Collapse
|
12
|
Ur Rahman S, Han JC, Ahmad M, Ashraf MN, Khaliq MA, Yousaf M, Wang Y, Yasin G, Nawaz MF, Khan KA, Du Z. Aluminum phytotoxicity in acidic environments: A comprehensive review of plant tolerance and adaptation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115791. [PMID: 38070417 DOI: 10.1016/j.ecoenv.2023.115791] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Nadeem Ashraf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuchen Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ghulam Yasin
- Department of Forestry and Range Management, FAS & T, Bahauddin Zakariya University Multan, Multan 60000, Pakistan
| | | | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; Applied College, King Khalid University, Abha 61413, Saudi Arabia
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Water Environment Factor Risk Assessment Laboratory of Agricultural Products Quality and Safety, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China.
| |
Collapse
|
13
|
Tisarum R, Sotesaritkul T, Pipatsitee P, Cha-Um K, Samphumphuang T, Singh HP, Cha-Um S. Toxicity, physiological, and morphological alterations of Indian camphorweed (Pluchea indica) in response to excess copper. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7637-7649. [PMID: 37402936 DOI: 10.1007/s10653-023-01679-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds. The aim of this study was to assess the impact of copper (Cu) contamination on the physiology and morphology of P. indica, and the health risks associated with its consumption as tea. The cuttings of P. indica were subjected to 0 mM (control), 5 mM (low Cu), and 20 mM (excess Cu) of CuSO4 treatments for 1, 2, and 4 weeks. Thereafter, Cu contamination as well as physiological and morphological parameters were assessed. Cu accumulation was higher in the root tissues of plants (25.8 folds higher as compared to the leaves) grown under 20 mM CuSO4 for 4 weeks. This increased Cu accumulation resulted in the inhibition of root length, root fresh weight, and root dry weight. Cu concentration was found maximum (1.36 μg g-1 DW) in the leaf tissues under 20 mM Cu exposure for 4 weeks, with the highest target hazard quotient (THQ = 1.85), whereas Cu was not detected in control. Under exposure to 20 mM Cu treatment for 4 weeks, leaf greenness, maximum quantum yield of photosystem II, and photon yield of photosystem II diminished by 21.4%, 16.1%, and 22.4%, respectively, as compared to the control. Leaf temperature was increased by 2.5 °C, and the crop stress index (CSI) exceeded 0.6 when exposed to 20 mM Cu treatment for 2 and 4 weeks; however, the control had a CSI below 0.5. This led to a reduced transpiration rate and stomatal conductance. In addition, the net photosynthetic rate was also found sensitive to Cu treatment, which resulted in decreased shoot and root growth. Based on the key results, it can be suggested that P. indica herbal tea derived from the foliage of plants grown under a 5 mM Cu level (0.75 μg g-1 DW) with a target hazard quotient below one aligns with the recommended dietary intake of Cu in leafy vegetables. The study recommends choosing cuttings from plants with a small canopy as plant material in the greenhouse microclimates to validate the growth performance in the Cu-contaminated soil and simulate the natural shrub architecture and life cycle.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Piyanan Pipatsitee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Kwankhao Cha-Um
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
14
|
Tisarum R, Rika R, Pipatsitee P, Sotesaritkul T, Samphumphuang T, Cha-um K, Cha-um S. Iron (Fe) toxicity, uptake, translocation, and physio-morphological responses in Catharanthus roseus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1289-1299. [PMID: 38024951 PMCID: PMC10678865 DOI: 10.1007/s12298-023-01379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Iron (Fe) toxicity in plant species depends on the availability of Fe in the soil, uptake ability by the root system, and translocation rate to other parts of the plant. The aim of this study was to assess Fe uptake by root tissues of Catharanthus roseus, translocation rate to leaf tissues, and the impairment of plant physio-morphological characteristics. Fe uptake by the roots (~ 700 µg g-1 DW) of C. roseus was observed during the early exposure period (1 week), and translocation factor from root to shoot was fluctuated as an independent strategy. A high level of Fe content in the root tissues significantly inhibited root length and root dry weight. Under acidic pH condition, an enrichment of Fe in the shoots (~ 400 µg g-1 DW) led to increase in leaf temperature (> 2.5 °C compared to control) and crop stress index (> 0.6), resulting in stomatal closure, subsequently decreasing CO2 assimilation rate and H2O transpiration rate. An increment of CSI in Fe-stressed plants was negatively related to stomatal conductance, indicating stomatal closure with an increase in Fe in the leaf tissues. High Fe levels in the leaf tissues directly induced toxic symptoms including leaf bronzing, leaf spotting, leaf necrosis, leaf chlorosis, and leaf senescence in C. roseus plants. In summary, C. roseus was identified as a good candidate plant for Fe phytoextraction, depending on Fe bioaccumulation, therefore 50 mM Fe treatment was designated as an excess Fe to cause the growth inhibition, especially in the prolonged Fe incubation periods. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01379-5.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Rika Rika
- Indonesia International Institute for Life Science, Jl. Pulomas Barat Kav. 88, Jakarta Timur, 13210 Indonesia
| | - Piyanan Pipatsitee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| | - Kwankhao Cha-um
- Science Classrooms in University-Affiliated School Project (SCIUS), Thamasart University, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120 Pathum Thani Thailand
| | - Suriyan Cha-um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nuang, Khlong Luang, 12120 Pathum Thani Thailand
| |
Collapse
|
15
|
Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1085998. [PMID: 36714730 PMCID: PMC9880555 DOI: 10.3389/fpls.2022.1085998] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Raymond H. Thomas
- School of Science and the Environment, Memorial University of Newfoundland, Grenfell Campus, Corner Brook, NL, Canada
| | - Samuel K. Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Bourlaye Fofana
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| |
Collapse
|
16
|
Phukunkamkaew S, Tisarum R, Sotesaritkul T, Maksup S, Singh HP, Cha-Um S. Aluminum uptake, translocation, physiological changes, and overall growth inhibition in rice genotypes (Oryza sativa) at vegetative stage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:187-197. [PMID: 35635683 DOI: 10.1007/s10653-022-01291-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) contamination in acidic soil is a major problem in paddy field, causing grain yield loss, especially in central plains of Thailand. The objective of this study was to assess Al content in the root tissues, its translocation to the leaves, and Al toxicity in three genotypes of rice, RD35 (local acidic-tolerant), Azucena (positive-check Al-tolerant), and IR64 (high yielding) under 0 (control) or 1 mM AlCl3 (Al toxicity) at pH 4.5. Al content in the root tissues of rice cv. RD35 under 1 mM AlCl3 was peaked at 4.18 mg g‒1 DW and significantly translocated to leaf tissues (0.35 mg g‒1 DW), leading to reduced leaf greenness (SPAD) (by 44.9% over the control) and declined net photosynthetic rate (Pn) (by 54.5% over the control). In contrast, Al level in cvs. Azucena and IR64 was restricted in the roots (2.12 mg g‒1 DW) with low amount of translocation in the leaf tissues (0.26 mg g‒1 DW), resulting in maintained values of SPAD and Pn. In cv. RD35, root and shoot traits including root length, root fresh weight, shoot height, shoot fresh weight, and shoot dry weight in 1 mM Al treatment were significantly dropped by > 35% over the control, whereas these parameters in cvs. Azucena and IR64 were retained. Based on the results, RD35 rice genotype was identified as Al sensitive as it demonstrated Al toxicity in both aboveground and belowground parts, whereas Azucena and IR64 were found tolerant to 1 mM Al as they demonstrated storage of Al in the root tissues to reduce toxicity in the leaf tissues. The study suggests that root traits, shoot attributes, chlorophyll degradation, and photosynthetic reduction can be successfully employed for the screening of Al-tolerant genotypes in rice breeding programs.
Collapse
Affiliation(s)
- Suwanna Phukunkamkaew
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
17
|
Zishiri RM, Mutengwa CS, Kondwakwenda A. Dry Matter Yield Stability Analysis of Maize Genotypes Grown in Al Toxic and Optimum Controlled Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:2939. [PMID: 36365391 PMCID: PMC9658909 DOI: 10.3390/plants11212939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Breeding for Al tolerance is the most sustainable strategy to reduce yield losses caused by Al toxicity in plants. The use of rapid, cheap and reliable testing methods and environments enables breeders to make quick selection decisions. The objectives of this study were to (i) identify high dry matter yielding and stable quality protein maize (QPM) lines grown under Al toxic and optimum conditions and (ii) compare the discriminating power of laboratory- and greenhouse-based testing environments. A total of 75 tropical QPM inbred lines were tested at seedling stage for dry matter yield and stability under optimum and Al toxic growing conditions across six laboratory- and greenhouse-based environments. The nutrient solution method was used for the laboratory trials, while the soil bioassay method was used for the greenhouse trials. A yield loss of 55% due to Al toxicity was observed, confirming the adverse effects of Al toxicity on maize productivity. The ANOVA revealed the presence of genetic variation among the set of genotypes used in this study, which can be exploited through plant breeding. Seventeen stable and high-yielding lines were identified and recommended. Greenhouse-based environments were more discriminating than laboratory environments. Therefore, we concluded that greenhouse environments are more informative than laboratory environments when testing genotypes for Al tolerance.
Collapse
|
18
|
Tisarum R, Pongprayoon W, Sithtisarn S, Sampumphuang T, Sotesaritkul T, Datta A, Singh HP, Cha-Um S. Expression levels of genes involved in metal homeostasis, physiological adaptation, and growth characteristics of rice (Oryza sativa L.) genotypes under Fe and/or Al toxicity. PROTOPLASMA 2022; 259:1013-1028. [PMID: 34714403 DOI: 10.1007/s00709-021-01719-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Acid sulphate soil contains high amounts of iron (Fe) and aluminum (Al), and their contamination has been reported as major problems, especially in rainfed and irrigated lowland paddy fields. Rice is sensitive to Fe and Al grown in acid soil (pH < 5.5), leading to growth inhibition and grain yield loss. The objective of this study was to evaluate Fe and/or Al uptake, translocation, physiological adaptation, metal toxicity, and growth inhibition in rice genotypes grown in acid soil. Fe and Al in the root tissues of all rice genotypes were enriched depending on the exogenous application of either Fe or Al in the soil solution, leading to root growth inhibition, especially in the KDML105 genotype. Expression level of OsYSL1 in KDML105 was increased in relation to metal uptake into root tissues, whereas OsVIT2 was downregulated, leading to Fe (50.3 mg g-1 DW or 13.1 folds over the control) and Al (4.8 mg g-1 DW or 2.2 folds over the control) translocation to leaf tissues. Consequently, leaf greenness (SPAD), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (E) in the leaf tissues of genotype KDML105 under Fe + Al toxicity significantly declined by 28.4%, 35.3%, 55.6%, and 51.6% over the control, respectively. In Azucena (AZU; Fe/Al tolerant), there was a rapid uptake of Fe and Al by OsYSL1 expression in the root tissues, but a limited secretion into vacuole organelles by OsVIT2, leading to a maintenance of low level of toxicity driven by an enhanced accumulation of glutathione together with downregulation of OsGR expression level. In addition, Fe and Al restrictions in the root tissues of genotype RD35 were evident; therefore, crop stress index (CSI) of Fe + Al-treated plants was the maximum, leading to an inhibition of gs (53.6% over the control) and E (49.0% over the control). Consequently, free proline, total phenolic compounds, and ascorbic acid in the leaf tissues of rice under Fe + Al toxicity significantly increased by 3.2, 1.2, and 1.5 folds over the control, respectively, indicating their functions in non-enzymatic antioxidant defense. Moreover, physiological parameters including leaf temperature (Tleaf) increment, high level of CSI (>0.6), SPAD reduction, photon yield of PSII (ΦPSII) diminution, Pn, gs, and E inhibition in rice genotype IR64 (Fe/Al-sensitive) under Fe + Al treatment were clearly demonstrated as good indicators of metal-induced toxicity. Our results on Fe- and/or Al-tolerant screening to find out the candidate genotypes will contribute to present screening and breeding efforts, which in turn help increase rice production in the Fe/Al-contaminated acid soil under lowland conditions.
Collapse
Affiliation(s)
- Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University, Saen Suk, Chon Buri, 20131, Thailand
| | - Sayamon Sithtisarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Sampumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thanyaporn Sotesaritkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
19
|
Chen W, Tang L, Wang J, Zhu H, Jin J, Yang J, Fan W. Research Advances in the Mutual Mechanisms Regulating Response of Plant Roots to Phosphate Deficiency and Aluminum Toxicity. Int J Mol Sci 2022; 23:ijms23031137. [PMID: 35163057 PMCID: PMC8835462 DOI: 10.3390/ijms23031137] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/08/2023] Open
Abstract
Low phosphate (Pi) availability and high aluminum (Al) toxicity constitute two major plant mineral nutritional stressors that limit plant productivity on acidic soils. Advances toward the identification of genes and signaling networks that are involved in both stresses in model plants such as Arabidopsis thaliana and rice (Oryza sativa), and in other plants as well have revealed that some factors such as organic acids (OAs), cell wall properties, phytohormones, and iron (Fe) homeostasis are interconnected with each other. Moreover, OAs are involved in recruiting of many plant-growth-promoting bacteria that are able to secrete both OAs and phosphatases to increase Pi availability and decrease Al toxicity. In this review paper, we summarize these mutual mechanisms by which plants deal with both Al toxicity and P starvation, with emphasis on OA secretion regulation, plant-growth-promoting bacteria, transcription factors, transporters, hormones, and cell wall-related kinases in the context of root development and root system architecture remodeling that plays a determinant role in improving P use efficiency and Al resistance on acidic soils.
Collapse
Affiliation(s)
- Weiwei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Li Tang
- College of Resources and Environment, Yunan Agricultural University, Kunming 650201, China;
| | - Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Jianfeng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.W.); (H.Z.); (J.J.)
- Correspondence: (J.Y.); (W.F.); Tel.: +86-871-6522-7681 (W.F.); Fax: +86-571-8820-6438 (J.Y.)
| | - Wei Fan
- College of Horticulture and Landscape, Yunan Agricultural University, Kunming 650201, China
- Correspondence: (J.Y.); (W.F.); Tel.: +86-871-6522-7681 (W.F.); Fax: +86-571-8820-6438 (J.Y.)
| |
Collapse
|