1
|
Gallo E, Smaldone G, Cimmino L, Braile M, Orlandella FM, Luciano N, Accardo A, Salvatore G. Fmoc-FF Nanogel-Mediated Delivery of Doxorubicin and Curcumin in Thyroid Cancer Cells. Pharmaceutics 2025; 17:263. [PMID: 40006633 PMCID: PMC11858838 DOI: 10.3390/pharmaceutics17020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Thyroid cancer (TC) is the most prevalent endocrine malignancy, and is categorized into well-differentiated and aggressive anaplastic types. Novel therapeutic modalities are needed for TC. Nanomedicine is a promising strategy for the development of precision medicine. In this context, we investigated the use of nanogels (NGs) to deliver agents with different physicochemical properties, specifically the hydrophilic agent doxorubicin (DOX) and the hydrophobic compound curcumin (CUR), in TC cell lines. Methods: Nα-9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) peptide-based NGs loaded with DOX and CUR were formulated using the solvent-switch method. DOX-loaded NGs were previously characterized. CUR-loaded NGs were characterized through rheology, scanning electron microscopy (SEM), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and Fourier transform infrared (FT-IR) spectroscopy. Confocal microscopy, q-RT-PCR, and ATP lite assays were performed to evaluate the uptake and delivery of DOX- and CUR-loaded NGs on TC cell lines. Results: CUR-loaded NGs exhibited a mean diameter of approximately 204.3 nm and a zeta potential of -34.6 mV, indicative of a good stability. In vitro release studies revealed a sustained release profile of CUR over 72 h. Functional analyses demonstrated that Fmoc-FF-loaded NGs were internalized into TC cell lines. They were primarily localized in the cytoplasm rather than in early endosomes, thereby ensuring intracellular stability. Furthermore, Fmoc-FF NGs reduced the nuclear uptake kinetics of DOX in TC cells, suggesting a potential reduction in dose-limiting toxicity. Comparative studies with CUR-loaded NGs revealed similar internalization and delayed nuclear uptake, highlighting the efficacy of Fmoc-FF NGs in delivering hydrophobic agents. Conclusions: Overall, the data suggest that Fmoc-FF NGs represent a promising strategy for delivering agents with diverse physicochemical properties in TC, enhancing their efficacy and safety and warranting further investigation.
Collapse
Affiliation(s)
- Enrico Gallo
- IRCCS SYNLAB SDN, 80146 Naples, Italy; (E.G.); (L.C.); (M.B.)
| | | | - Luca Cimmino
- IRCCS SYNLAB SDN, 80146 Naples, Italy; (E.G.); (L.C.); (M.B.)
| | | | - Francesca Maria Orlandella
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy; (F.M.O.); (G.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Neila Luciano
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Antonella Accardo
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy;
| | - Giuliana Salvatore
- Dipartimento delle Scienze Mediche, Motorie e del Benessere, Università degli Studi di Napoli “Parthenope”, 80133 Naples, Italy; (F.M.O.); (G.S.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
2
|
Cheng Y, Xu Q, Yu M, Dang C, Deng L, Chen H. Curcumin Nanoparticles-related Non-invasive Tumor Therapy, and Cardiotoxicity Relieve. Curr Med Chem 2025; 32:447-467. [PMID: 38918994 PMCID: PMC11826934 DOI: 10.2174/0109298673305616240610153554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Non-invasive antitumor therapy can treat tumor patients who cannot tolerate surgery or are unsuitable. However, tumor resistance to non-invasive antitumor therapy and cardiotoxicity caused by treatment seriously affect the quality of life and prognosis of patients. As a kind of polyphenol extracted from herbs, curcumin has many pharmacological effects, such as anti-inflammation, antioxidation, antitumor, etc. Curcumin plays the antitumor effect by directly promoting tumor cell death and reducing tumor cells' invasive ability. Curcumin exerts the therapeutic effect mainly by inhibiting the nuclear factor-κB (NF-κB) signal pathway, inhibiting the production of cyclooxygenase-2 (COX-2), promoting the expression of caspase-9, and directly inducing reactive oxygen species (ROS) production in tumor cells. Curcumin nanoparticles can solve curcumin's shortcomings, such as poor water solubility and high metabolic rate, and can be effectively used in antitumor therapy. Curcumin nanoparticles can improve the prognosis and quality of life of tumor patients by using as adjuvants to enhance the sensitivity of tumors to non-invasive therapy and reduce the side effects, especially cardiotoxicity. In this paper, we collect and analyze the literature of relevant databases. It is pointed out that future research on curcumin tends to alleviate the adverse reactions caused by treatment, which is of more significance to tumor patients.
Collapse
Affiliation(s)
- Yuhang Cheng
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Qian Xu
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Miao Yu
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Chenwei Dang
- Department of Cardiology, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150006, Heilongjiang, China
| | - Limei Deng
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| | - Huijun Chen
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Guogeli Road, Nangang District, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
3
|
Farkhondeh T, Roshanravan B, Samini F, Samarghandian S. Protective Effects of Curcumin against Nephrotoxicity in Male Rats after Chronic Exposure to Chlorpyrifos. Curr Pharm Biotechnol 2025; 26:827-835. [PMID: 39238382 DOI: 10.2174/0113892010307571240817190846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Organophosphorus insecticides, widely used in farming and agriculture, have been associated with various health issues. Curcumin, a natural antioxidant, has shown potential in mitigating the adverse effects induced by these insecticides. AIMS This study aimed to evaluate the nephroprotective effects of Curcumin (CUR) against Chlorpyrifos (CPF)-induced renal damage. METHODS Forty male Wistar albino rats were randomly assigned to five groups, each containing eight rats: control (0.5 mL of olive oil, the solvent for chlorpyrifos), CPF (10 mg/kg of chlorpyrifos), CPF + CUR 25 mg/kg/day, CPF + CUR 50 mg/kg/day, and CPF + CUR 100 mg/k/day. All groups were treated for 90 days. Finally, kidney tissue was assessed for oxidative stress, inflammatory markers, and histopathological changes. RESULT A considerable elevation in urea and Creatinine (Cr) concentrations was observed in the CPF group compared to the control rats (p < 0.01). CUR decreased creatinine and urea levels in the CPF-exposed group compared to the non-CUR-treated animals (p < 0.05). Additionally, the concentrations of NO, MDA, IL-6, IL-1β, and TNFα were significantly increased in the kidneys of the CPF-induced rats compared to the controls (p < 0.001). However, CUR (100 mg/kg) administration significantly reduced the abovementioned parameters in rat kidneys (p < 0.01). CUR (100 mg/kg) also increased superoxide dismutase activity and glutathione concentration in the kidneys of CPF-exposed animals compared to non-CUR-treated rats (p < 0.05). Histopathological analysis revealed severe congestion in the kidney tissue after CPF exposure. However, coadministration of CUR restored the normal structure of the kidney in the experimental rats. CONCLUSION Our findings suggest that curcumin, a potent antioxidant, can help alleviate chlorpyrifos-induced nephrotoxicity.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Department of Orthopedics, School of Medicine, Shafa Yahyaeian Orthopedics Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Samini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Samarghandian
- Department of Medical Physiology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Chung G, Kim SK. Therapeutics for Chemotherapy-Induced Peripheral Neuropathy: Approaches with Natural Compounds from Traditional Eastern Medicine. Pharmaceutics 2022; 14:pharmaceutics14071407. [PMID: 35890302 PMCID: PMC9319448 DOI: 10.3390/pharmaceutics14071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) often develops in patients with cancer treated with commonly used anti-cancer drugs. The symptoms of CIPN can occur acutely during chemotherapy or emerge after cessation, and often accompany long-lasting intractable pain. This adverse side effect not only affects the quality of life but also limits the use of chemotherapy, leading to a reduction in the survival rate of patients with cancer. Currently, effective treatments for CIPN are limited, and various interventions are being applied by clinicians and patients because of the unmet clinical need. Potential approaches to ameliorate CIPN include traditional Eastern medicine-based methods. Medicinal substances from traditional Eastern medicine have well-established analgesic effects and are generally safe. Furthermore, many substances can also improve other comorbid symptoms in patients. This article aims to provide information regarding traditional Eastern medicine-based plant extracts and natural compounds for CIPN. In this regard, we briefly summarized the development, mechanisms, and changes in the nervous system related to CIPN, and reviewed the substances of traditional Eastern medicine that have been exploited to treat CIPN in preclinical and clinical settings.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
6
|
Lai WF. Design of Polymeric Films for Antioxidant Active Food Packaging. Int J Mol Sci 2021; 23:12. [PMID: 35008439 PMCID: PMC8744826 DOI: 10.3390/ijms23010012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant active food packaging can extend the shelf life of foods by retarding the rate of oxidation reactions of food components. Although significant advances in the design and development of polymeric packaging films loaded with antioxidants have been achieved over the last several decades, few of these films have successfully been translated from the laboratory to commercial applications. This article presents a snapshot of the latest advances in the design and applications of polymeric films for antioxidant active food packaging. It is hoped that this article will offer insights into the optimisation of the performance of polymeric films for food packaging purposes and will facilitate the translation of those polymeric films from the laboratory to commercial applications in the food industry.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| |
Collapse
|
7
|
Grover M, Behl T, Sehgal A, Singh S, Sharma N, Virmani T, Rachamalla M, Farasani A, Chigurupati S, Alsubayiel AM, Felemban SG, Sanduja M, Bungau S. In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules 2021; 26:7509. [PMID: 34946592 PMCID: PMC8705887 DOI: 10.3390/molecules26247509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
The Curcuma longa plant is endowed with multiple traditional and therapeutic utilities and is here explored for its phytochemical constituents and cytotoxic potential. Turmeric rhizomes were extracted from three different solvents and screened for the presence of different phytochemical constituents, observation of which indicated that the polar solvents favoured extraction of greater versatile phytochemical constituents. These extracts were investigated for their cytotoxic potential by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on three different of cell lines including SCC-29B (oral cancer cell line), DU-145 (prostate cancer cell line) and the Vero cell line (healthy cell line/non-cancerous cell line). This assay was performed by taking three extracts from isolated curcuminoids and a pure bioactive compound bisdemethoxycurcumin (BD). Bisdemethoxycurcumin was isolated from curcuminoids and purified by column and thin-layer chromatography, and its structural characterisation was performed with different spectroscopic techniques such as FTIR, NMR (1H Proton and 13C Carbon-NMR) and LC-MS. Amongst the extracts, the ethanolic extracts exhibited stronger cytotoxic potential against the oral cancer cell line (SCC-29B) with an IC50value of 11.27 μg/mL, and that this was too low of a cytotoxicity against the Vero cell line. Although, curcuminoids have also shown a comparable cytotoxic potential against SCC-29B (IC50 value 16.79 μg/mL), it was not as potent against the ethanolic extract, and it was even found to be cytotoxic against healthy cell lines at a very low dose. While considering the isolated compound, bisdemethoxycurcumin, it also possessed a cytotoxic potential against the prostate cancer cell line (DU-145) (IC50 value of 93.28 μg/mL), but was quite safe for the healthy cell line in comparison to doxorubicin.
Collapse
Affiliation(s)
- Madhuri Grover
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Abdullah Farasani
- Biomedical Research Unit, Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
8
|
Castro LHE, Sant'Anna CMR. Molecular Modeling Techniques Applied to the Design of Multitarget Drugs: Methods and Applications. Curr Top Med Chem 2021; 22:333-346. [PMID: 34844540 DOI: 10.2174/1568026621666211129140958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Multifactorial diseases, such as cancer and diabetes present a challenge for the traditional "one-target, one disease" paradigm due to their complex pathogenic mechanisms. Although a combination of drugs can be used, a multitarget drug may be a better choice face of its efficacy, lower adverse effects and lower chance of resistance development. The computer-based design of these multitarget drugs can explore the same techniques used for single-target drug design, but the difficulties associated to the obtention of drugs that are capable of modulating two or more targets with similar efficacy impose new challenges, whose solutions involve the adaptation of known techniques and also to the development of new ones, including machine-learning approaches. In this review, some SBDD and LBDD techniques for the multitarget drug design are discussed, together with some cases where the application of such techniques led to effective multitarget ligands.
Collapse
Affiliation(s)
| | - Carlos Mauricio R Sant'Anna
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica. Brazil
| |
Collapse
|
9
|
Shen Q, Jiang Y, Chen J, Wang X, Zheng J. A Novel Curcumin-Based Drug Powder Inhalation Medicine for Chronic Obstructive Pulmonary Disease. Bioinorg Chem Appl 2021; 2021:8001787. [PMID: 34880911 PMCID: PMC8648444 DOI: 10.1155/2021/8001787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
The dry powder inhaler is a new form of drug delivery that is widely used as an alternative to traditional drug delivery methods, addressing the shortcomings of traditional drug delivery methods and obtaining better therapeutic results. This mode of delivery is also one of the most rational ways to treat pulmonary diseases such as chronic obstructive pulmonary disease (COPD). Curcumin, a natural polyphenol, has been shown to be effective in the treatment of COPD. In this study, different concentrations of curcumin ethanol solution were spray dried with mannitol as a carrier to obtain dry powder particles with different particle size distribution for the preparation of curcumin dry powder inhaler. The solubility and physicochemical properties were further characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy. The characterization results showed that the product obtained in the experiment had reasonable particle size distribution and excellent solubility properties, which were positive for the treatment of COPD or other pulmonary diseases.
Collapse
Affiliation(s)
- Qin Shen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Yongjie Jiang
- Department of Gynecology and Obstetrics, Zhengzhou Big Bridge Hospital, Zhengzhou 450000, China
| | - Jing Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Xueling Wang
- Department of Respiratory Medicine Lung Function Room, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| | - Jiao Zheng
- Drug Clinical Trial Institution Department, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410005, China
| |
Collapse
|
10
|
Zhang L, Xu S, Cheng X, Wu J, Wu L, Wang Y, Wang X, Bao J, Yu H. Curcumin induces autophagic cell death in human thyroid cancer cells. Toxicol In Vitro 2021; 78:105254. [PMID: 34634291 DOI: 10.1016/j.tiv.2021.105254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Curcumin, a polyphenolic compound, is a well-known anticancer agent, although its poor bioavailability remains a big concern. Recent studies suggest that autophagy-targeted therapy may be a useful adjunct treatment for patients with thyroid cancer. Curcumin acts as an autophagy inducer on many cancer cells. However, little is known about the exact role of curcumin on thyroid cancer cells. In the present study, curcumin significantly inhibited the growth of thyroid cancer cells. Autophagy was markedly induced by curcumin treatment as evidenced by an increase in LC3-II conversion, beclin-1 accumulation, p62 degradation as well as the increased formation of acidic vesicular organelles (AVOs). 3-MA, an autophagy inhibitor, partially rescued thyroid cancer cells from curcumin-induced cell death. Additionally, curcumin was found to exert selective cytotoxicity on thyroid cancer cells but not normal epithelial cells and acted as an autophagy inducer through activation of MAPK while inhibition of mTOR pathways. Hyperactivation of the AKT/mTOR axis was observed in the majority of PTC samples we tested, and thyroid cancer cell lines along with cancer tissue specimens sustained a low basal autophagic activity. Taken together, our results provide new evidence that inducing autophagic cell death may serve as a potential anti-cancer strategy to handle thyroid cancer.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; School of Life science and Technology, Southeast University, Nanjing 210096, China.
| | - Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| |
Collapse
|
11
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|