1
|
Mussali-Galante P, Gómez-Arroyo S, Rodríguez-Solís A, Valencia-Cuevas L, Flores-Márquez AR, Castrejón-Godínez ML, Murillo-Herrera AI, Tovar-Sánchez E. Multi-biomarker approach reveals the effects of heavy metal bioaccumulation in the foundation species Prosopis laevigata (Fabaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47116-47131. [PMID: 38985418 DOI: 10.1007/s11356-024-34239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Mining is a major economic activity in many developing countries. However, it disturbs the environment, producing enormous quantities of waste, known as mine tailings, which can have deleterious environmental impact, due to their high heavy metals (HM) content. Often, foundation species that establish on mine tailings are good candidates to study the effects of HM bioaccumulation at different levels of biological organization. Prosopis laevigata is considered a HM hyperaccumulator which presents attributes of a foundation species (FS) and establishes naturally on mine tailings. We evaluated the bioaccumulation of Cu, Pb, and Zn in P. laevigata foliar tissue, the leaf micro- and macro-morphological characters, DNA damage, and population genetic effects. In total, 80 P. laevigata individuals (20/site) belonging to four populations: The individuals from both sites (exposed and reference) bioaccumulated HMs (Pb > Cu > Zn). However, in the exposed individuals, Pb and Cu bioaccumulation was significantly higher. Also, a significant effect of macro- and micro-morphological characters was registered, showing significantly lower values in individuals from the exposed sites. In addition, we found significant differences in genotoxic damage in P. laevigata individuals, between the exposed and reference sites. In contrast, for the micro-morphological characters, none of the analyzed metals had any influence. P. laevigata did not show significant differences in the genetic structure and diversity between exposed and reference populations. However, four haplotypes and four private alleles were found in the exposed populations. Since P. laevigata is a species that establishes naturally in polluted sites and bioaccumulates HM in its foliar tissues, the resulting genetic, individual and population effects have not been severe enough to show detrimental effects; hence, P. laevigata can be a useful tool in phytoremediation strategies for soils polluted with Pb and Cu, maintaining its important ecological functions.
Collapse
Affiliation(s)
- Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Alexis Rodríguez-Solís
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Leticia Valencia-Cuevas
- Escuela de Estudios Superiores del Jicarero, Universidad Autónoma del Estado de Morelos, Carretera Galeana-Tequesquitengo S/N, Comunidad El Jicarero, Jojutla, Morelos, Mexico
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Aída Isabel Murillo-Herrera
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de La Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
2
|
Cortés-Eslava J, Gómez-Arroyo S, Cortés PAM, Jiménez-García LF, Lara-Martínez R, Arenas-Huertero F, Morton-Bermea O, Testillano PS. The wild plant Gnaphalium lavandulifolium as a sentinel for biomonitoring the effects of environmental heavy metals in the metropolitan area of México Valley. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:195. [PMID: 36512105 DOI: 10.1007/s10661-022-10763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Biomonitoring is a valuable tool for assessing the presence and effects of air pollutants such as heavy metals (HM); due to their toxicity and stability, these compounds can affect human health and the balance of ecosystems. To assess its potential as a sentinel organism of HM pollution, the wild plant Gnaphalium lavandulifolium was exposed to four sites in the metropolitan area of México Valley (MAMV): Altzomoni (ALT) Coyoacán (COY), Ecatepec (ECA), and Tlalnepantla (TLA) during 2, 4, and 8 weeks, between October and November 2019. Control plants remained under controlled conditions. The chemical analysis determined twelve HM (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) in the leaves. Macroscopic damage to the leaves, later determined in semi-thin sections under light microscopy, lead to a finer analysis. Transmission electron microscope (TEM) showed major structural changes: chromatin condensation, protoplast shrinkage, cytoplasm vacuolization, cell wall thinning, decreased number and size of starch grains, and plastoglobules in chloroplasts. All these characteristics of stress-induced programed cell death (sPCD) were related to the significant increase of toxic HM in the leaves of the exposed plants compared to the control (p < 0.05). Immunohistochemistry revealed a significant amount of proteases with caspase 3-like activity in ECA and TLA samples during long exposure times. Ultrastructural changes and sPCD features detected confirmed the usefulness of G. lavandulifolium as a good biomonitor of HM contamination. They supported the possibility of considering subcellular changes as markers of abiotic stress conditions in plants.
Collapse
Affiliation(s)
- Josefina Cortés-Eslava
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México.
| | - Pablo Antonio Mérida Cortés
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Luis Felipe Jiménez-García
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Reyna Lara-Martínez
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Ofelia Morton-Bermea
- Laboratorio de Geomagnetismo y Exploración Geofísica, Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Pilar S Testillano
- Laboratory of Pollen Biotechnology of Crop Plants, Centro de Investigaciones Biológicas Margarita Salas (CIB), C.S.I.C, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
3
|
Li Y, Dong Z, Feng D, Zhang X, Jia Z, Fan Q, Liu K. Study on the risk of soil heavy metal pollution in typical developed cities in eastern China. Sci Rep 2022; 12:3855. [PMID: 35264659 PMCID: PMC8907225 DOI: 10.1038/s41598-022-07864-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Enrichment of heavy metals in urban soils has become a major regional environmental risk. At present, research on the soil heavy metals in cities lacks risk spatial correlation analyses between different heavy metals, and there is a relative lack of assessments of the ecological and health risks. We selected Wuxi, a typical developed city of eastern China, collected and tested the contents of heavy metals in the urban soils of Wuxi in May 2020. Combined with Pb isotope analysis, ecological and health risk assessment, we found that the high heavy metal concentrations in Wuxi are mainly located in the central and western regions, and that the changes in spatial fluctuation are relatively small. The Pb isotopes in the urban soils of Wuxi are distributed in areas, such as those are related to coal combustion, automobile exhaust and urban garbage, indicating that the heavy metals in the urban soils of Wuxi are affected by human activities such as coal combustion and automobile exhaust. The average value of the potential ecological risk index of soil heavy metal Cd is 80.3 (the threshold: 40), which represents a high-risk state. Whether adults or children, the risk of soil heavy metals via ingestion is much higher than that through skin exposure. High health risk values are present in the central area of Wuxi and decrease in a ring-shaped pattern, which is similar to the population distribution of Wuxi and greatly increases the potential risk from soil heavy metals, which should be given close attention. We should develop and use clean energy to replace petroleum fossil fuels, especially in densely populated areas. This study provides technical support for the prevention and control of urban heavy metal pollution.
Collapse
Affiliation(s)
- Yan Li
- Collaborative Innovation Center of Sustainable Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China. .,Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, China. .,Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China.
| | - Zhen Dong
- Collaborative Innovation Center of Sustainable Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Dike Feng
- Collaborative Innovation Center of Sustainable Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiaomian Zhang
- Zhejiang Academy of Forestry Sciences, Hangzhou, Zhejiang, China
| | - Zhenyi Jia
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, China
| | - Qingbin Fan
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ke Liu
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, China
| |
Collapse
|