1
|
Lin S, Lyu T, Pan M, Hou Y, Guo C, Chen Z, Dong R, Liu S. Exploration of ammonia stripping coupled adsorption-membrane filtration process for treating kitchen waste biogas slurry. ENVIRONMENTAL RESEARCH 2025; 274:121318. [PMID: 40054553 DOI: 10.1016/j.envres.2025.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 05/04/2025]
Abstract
The potential contamination of biogas slurry generated from the anaerobic digestion of kitchen waste (KW) poses a considerable challenge to its safe and effective utilization as a fertilizer. To tackle this problem, a novel route termed "AS-BC" was developed, integrating ammonia stripping (AS), biochar adsorption, and ceramic membrane filtration (CMF) for comprehensive pollutant mitigation. A stepwise optimization was carried out, comparing biochar adsorption investigation, the AS process, and the combined AS + CMF process. Results indicated that the AS process possessed the maximum total ammonia nitrogen (TAN) removal of 86.21% at an airflow rate of 40 L/min. The combined AS and CMF process with 0.1 μm membrane had best performance for total phosphorus (TP) with removal efficiencies of 80.45%-87.98%. Under the optimal biochar addition condition of 5 g/L with a particle size of 0.25-0.85 μm, the adsorption pretreatment effectively removed 0.41 g/g of soluble chemical oxygen demand (SCOD), prevented nutrient loss, and substantially enhanced pollutant removal efficiency in the subsequent CMF process. Compared to other routes, the route AS-BC achieved higher total nitrogen (TN), TAN, TP, and SCOD removal efficiency of 91.42%, 91.49%, 89.54%, and 76.34% from the raw biogas slurry, respectively. Moreover, the route AS-BC demonstrated its cost-effectiveness in producing nutrient-rich concentrated slurry suitable for use as fertilizer. The route AS-BC was proved to comprehensively remove various indicators from the KW biogas slurry while generating economically reuse by-products during the membrane filtration process. This study offers valuable insights into the trade-offs between AS performance enhancement and pollutant mitigation, pinpointing essential routes for future research and practical improvements.
Collapse
Affiliation(s)
- Shupeng Lin
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, United Kingdom
| | - Minmin Pan
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, 04318, Germany
| | - Yahan Hou
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Chunchun Guo
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Zhihao Chen
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Shan Liu
- College of Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
2
|
Powders MT, Luqmani BA, Pidou M, Zhu M, McAdam EJ. The use of ammonia recovered from wastewater as a zero-carbon energy vector to decarbonise heat, power and transport - A review. WATER RESEARCH 2025; 268:122649. [PMID: 39509768 DOI: 10.1016/j.watres.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Ammonia (NH3) is an energy vector with an emerging role in decarbonising heat, power and transport through its direct use as a fuel, or indirectly as a hydrogen carrier. Global ammonia production is having to grow to enable the exploitation of NH3 for energy decarbonisation, which it is projected will consume >50 % of manufacturing capacity by 2050. Ammonia recovered from wastewater can be directly exploited as a sustainable source of ammonia, to reduce the demand for ammonia produced through the energy intensive Haber-Bosch process, while fostering a triple carbon benefit to the water sector, by: (i) avoiding the energy required for aeration of biological processes; (ii) reducing nitrous oxide emissions associated with ammonia oxidation, which is a potent greenhouse gas; and (iii) producing a zero-carbon energy source that can decarbonise energy use. While previous reviews have described technologies relevant for ammonia recovery, to produce ammonia as a zero-carbon fuel or hydrogen carrier, wastewater ammonia must be transformed into the relevant concentration, phase and achieve the product quality demanded for zero carbon heat, power and transport applications, which are distinct from those demanded for more conventional exploitation routes (e.g. agricultural). This review therefore presents a synthesis of established and emerging technologies for the extraction and concentration of ammonia from wastewater, with specific emphasis on enabling the production of ammonia in a form that can be directly exploited for zero carbon energy generation. A précis of technologies for the valorisation of ammonia as a clean energy or hydrogen resource is also introduced, together with discussion of their relevancy and applicability to the water sector including implications to energy, carbon emissions and financial return. The exploitation of ammonia recovered from wastewater as a zero carbon energy source is shown to offer a critical contemporary response for the water sector that seeks to rapidly decarbonise existing infrastructure, while responding to ever stricter nitrogen discharge limits.
Collapse
Affiliation(s)
- M T Powders
- Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - B A Luqmani
- Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - M Pidou
- Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - M Zhu
- Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - E J McAdam
- Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
3
|
Song M, Yuan M, Jeong S, Bae H. Thickness of hydrogel for nitrifying biomass entrapment determines the free ammonia susceptibility differently in batch and continuous modes. Sci Rep 2023; 13:9353. [PMID: 37291176 PMCID: PMC10250323 DOI: 10.1038/s41598-023-36507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Hydrogels immobilizing nitrifying bacteria with different thicknesses of 0.55 and 1.13 cm (HG-0.55 and HG-1.13, respectively) were produced. It was recognized that the thickness of media is a crucial parameter that affects both the stability and efficiency of wastewater treatment. Batch mode experiments were conducted to quantify specific oxygen uptake rate (SOUR) values at various total ammonium nitrogen (TAN) concentrations and pH levels. In the batch test, HG-0.55 exhibited 2.4 times higher nitrifying activity than HG-1.13, with corresponding SOUR values of 0.00768 and 0.00317 mg-O2/L mL-PVA min, respectively. However, HG-0.55 was more susceptible to free ammonia (FA) toxicity than HG-1.13, resulting in a reduction of 80% and 50% in SOUR values for HG-0.55 and -1.13, respectively, upon increasing the FA concentration from 15.73 to 118.12 mg-FA/L. Continuous mode experiments were conducted to assess the partial nitritation (PN) efficiency in practical applications, where continuous wastewater inflow maintains low FA toxicity through high ammonia-oxidizing rates. With step-wise TAN concentration increases, HG-0.55 experienced a gentler increase in FA concentration compared to HG-1.13. At a nitrogen loading rate of 0.78-0.95 kg-N/m3 day, the FA increase rate for HG-0.55 was 0.0179 kg-FA/m3 day, while that of HG-1.13 was 0.0516 kg-FA/m3 day. In the batch mode, where wastewater is introduced all at once, the high accumulation of FA posed a disadvantage for the FA-susceptible HG-0.55, which made it unsuitable for application. However, in the continuous mode, the thinner HG-0.55, with its larger surface area and high ammonia oxidation activity, proved to be suitable and demonstrated its effectiveness. This study provides valuable insights and a framework for the utilization strategy of immobilized gels in addressing the toxic effects of FA in practical processes.
Collapse
Affiliation(s)
- Minsu Song
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Meng Yuan
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyokwan Bae
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
4
|
Yang D, Chen Q, Liu R, Song L, Zhang Y, Dai X. Ammonia recovery from anaerobic digestate: State of the art, challenges and prospects. BIORESOURCE TECHNOLOGY 2022; 363:127957. [PMID: 36113813 DOI: 10.1016/j.biortech.2022.127957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing wastewater and organic wastes are inevitably produced during human activities. To reduce nitrogen pollution, much energy has been used to convert ammonia nitrogen into nitrogen gas through biological nitrogen removal method. However, it needs to consume high energy again during industrial nitrogen fixation, which give rise to massive greenhouse gas (GHG) emissions. Therefore, ammonia recovery from organic wastes has attracted much attention in recent years. In this review, the advantages and disadvantages of ammonia stripping, membrane separation and struvite precipitation are discussed firstly. The ammonia stripping mechanisms, influencing factors, mass transfer process, and the latest innovative ammonia stripping techniques from the anaerobic digestate of organic wastes are critically reviewed. Additionally, a comprehensive economic analysis of different ammonia removal or recovery processes is carried out. The challenges and prospects of ammonia recovery are suggested. Ammonia recovery is of great significance for promoting nitrogen cycle, energy saving and GHG emission reduction.
Collapse
Affiliation(s)
- Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuhong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing 100082, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
5
|
Abstract
Second-generation biomass is an underexploited resource, which can lead to valuable products in a circular economy. Available locally as food waste, gardening and pruning waste or agricultural waste, second-generation biomass can be processed into high-valued products through a flexi-feed small-scale biorefinery. The flexi-feed and the use of local biomass ensure the continuous availability of feedstock at low logistic costs. However, the viability and sustainability of the biorefinery must be ensured by the design and optimal operation. While the design depends on the available feedstock and the desired products, the optimisation requires the availability of a mathematical model of the biorefinery. This paper details the design and modelling of a small-scale biorefinery in view of its optimisation at a later stage. The proposed biorefinery comprises the following processes: steam refining, anaerobic digestion, ammonia stripping and composting. The models’ integration and the overall biorefinery operation are emphasised. The simulation results assess the potential of the real biowaste collected in a commune in Flanders (Belgium) to produce oligosaccharides, lignin, fibres, biogas, fertiliser and compost. This represents a baseline scenario, which can be subsequently employed in the evaluation of optimised solutions. The outlined approach leads to better feedstocks utilisation and product diversification, raising awareness on the impact and importance of small-scale biorefineries at a commune level.
Collapse
|