1
|
Rajpoot R, Rajput S, Koiri RK. Microcystin-LR and its health impacts: Chemistry, transmission routes, mechanisms of toxicity and target organs. Toxicol Rep 2025; 14:101996. [PMID: 40177604 PMCID: PMC11964656 DOI: 10.1016/j.toxrep.2025.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/02/2025] [Accepted: 03/09/2025] [Indexed: 04/05/2025] Open
Abstract
Microcystin-LR, a hepatotoxin produced by cyanobacteria, poses significant health risks to humans and other animals through various routes of exposure. This review comprehensively explores the chemistry, transmission pathways, mechanisms of toxicity, and target organs affected by MC-LR to provide a detailed understanding of its health impacts on animals and humans. MC-LR exposure occurs through different transmission routes, including ingesting contaminated water and food, algal dietary supplements, direct body contact with harmful algal blooms, and inhalation of aerosolized toxins. In this review, we explored that the toxic effects of MC-LR are mediated through multiple complex mechanisms. A key mechanism of its toxicity is the inhibition of protein phosphatases PP1 and PP2A which results in abnormal cellular signalling pathways. Additionally, MC-LR induces oxidative stress and disrupts cellular homeostasis. The findings suggest that MC-LR modulates the activity of various antioxidant enzymes and also activates apoptosis pathways by different mechanisms. It also induces cytoskeletal disruption, ultimately compromising cellular integrity and function. MC-LR also induces activation of oncogenes such as Gankyrin, PI3K/AKT, HIF-1α, RAC1/JNK and NEK2 pathway and upregulates the inflammatory molecules such as NF-κβ, and TNF-α, hence leading to carcinogenesis. MC-LR has toxicological effects on multiple organs. The liver is the primary target, where MC-LR accumulates and causes hepatotoxicity, but other organs are affected as well. MC-LR shows neurotoxicity, nephrotoxicity, cardiotoxicity and reproductive toxicity.
Collapse
Affiliation(s)
- Roshni Rajpoot
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Siddharth Rajput
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
2
|
Cordeiro-Araújo MK, Chia MA, Lorenzi AS, Bittencourt-Oliveira MDC. Assessing the response lettuce and arugula to MC-LR-contaminated water irrigation: photosynthetic changes and antioxidant defense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56578-56592. [PMID: 39277832 DOI: 10.1007/s11356-024-34959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Irrigation of crops with cyanotoxin-contaminated water poses a significant risk to human health. The direct phytotoxic effects of microcystin-LR (MC-LR), one of the most toxic and prevalent microcystin variants in water bodies, can induce physiological stress and hinder crop development and production. This study investigated the impact of environmentally relevant concentrations of MC-LR (1 to 10 µg L-1) on photosynthetic parameters and antioxidant response of lettuce (Lactuca sativa L.) and arugula (Eruca sativa L.) following irrigation with contaminated water. During the 15-day experiment, lettuce and arugula were exposed to various concentrations of MC-LR, and their photosynthetic rates, stomatal conductance, leaf tissue transpiration, and intercellular CO2 concentrations were measured using an infrared gas analyzer. These results suggest that the influence of MC-LR on gas exchange in crops is concentration-dependent, with notable disruptions during exposure and recovery tendency during detoxification. Antioxidant response analysis revealed that glutathione S-transferase (GST) and superoxide dismutase (SOD) activities were upregulated during the exposure phase in the presence of MC-LR. However, GST activity decreased during the detoxification phase in both crops, although the effects of the toxin at 10 µg L-1 were still evident in arugula. The internal H2O2 concentration in the crops increased after exposure to MC-LR, showing a time- and concentration-dependent pattern, with an increase during the exposure phase (days 1-7) and a decrease during the detoxification phase (days 8-15). Irrigation of lettuce and arugula with MC-LR-contaminated water affected various aspects of the photosynthetic apparatus and antioxidant responses, which could influence the general health and productivity of exposed crops at environmentally relevant microcystin concentrations. Furthermore, investigation of additional vegetable species and long-term MC-LR exposure can be crucial for understanding the extent of contamination risk, detoxification mechanisms, and other parameters affecting these crops.
Collapse
Affiliation(s)
- Micheline Kézia Cordeiro-Araújo
- Department of Cell Biology, Postgraduate Program in Microbial Biology, University of Brasília - UnB, Brasília, DF, 70910-900, Brazil.
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil.
| | - Mathias Ahii Chia
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Ecology, University of Brasilia - UnB, Brasília, DF, 70910-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Kaduna, Nigeria
| | - Adriana Sturion Lorenzi
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Maria do Carmo Bittencourt-Oliveira
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
3
|
Wang W, Man Z, Li X, Zhao Y, Chen R, Pan T, Wang L, Dai X, Xiao H, Liu F. Multi-phenotype response and cadmium detection of rice stem under toxic cadmium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170585. [PMID: 38301779 DOI: 10.1016/j.scitotenv.2024.170585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Rice stem is the sole conduit for cadmium translocation from underground to aboveground. The presence of cadmium can trigger responses of rice stem multi-phenotype, affecting metabolism, reducing yield, and altering composition, which is related to crop growth, food safety, and new energy utilization. Exploring the adversity response of plant phenotypes can provide a reliable assessment of growth status. However, the phytotoxicity and mechanism of cadmium stress on rice stem remain unclear. Here, we systematically revealed the response mechanisms of cadmium accumulation, adversity physiology, and morphological characteristic in rice stem under cadmium stress for the first time with concentration gradients of CK, 5, 25, 50, and 100 μM, and duration gradients of Day 5, Day 10, Day 15, and Day 20. The results indicated that cadmium stress led to a significant increase in cadmium accumulation, accompanied by the adversity response in stem phenotypes. Specifically, cadmium can cause fluctuations in soluble protein and disturbance of malondialdehyde (MDA), which reflects lipid peroxidation induced by cadmium accumulation. Lipid peroxidation inhibited rice growth by causing (1) a reduction in stem length, diameter, and weight, (2) suppression of air cavity, vascular bundle, parenchyma, and epidermal hair, and (3) disruption of cell structure. Furthermore, rapid detection of cadmium was realized based on the combination of laser-induced breakdown spectroscopy (LIBS) and machine learning, which took less than 3 min. The established qualitative model realized the precise discrimination of cadmium stress degrees with a prediction accuracy exceeding 92 %, and the quantitative model achieved the outstanding prediction effect of cadmium, with Rp of 0.9944. This work systematically revealed the phytotoxicity of cadmium on rice stem multi-phenotype from a novel perspective of lipid peroxidation and realized the rapid detection of cadmium in rice stem, which provided the technical tool and theoretical foundation for accurate prevention and efficient control of heavy metal risks in crops.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zun Man
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaolong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiying Zhao
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tiantian Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Leiping Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xiaorong Dai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Jiang J, Shi Y, Tian F, Long T, Li X, Ying R. Bioaccumulation of Microcystin-LR and Induced Physio-Biochemical Changes in Rice ( Oryza sativa L.) at Vegetative Stage under Hydroponic Culture Conditions. Toxins (Basel) 2024; 16:82. [PMID: 38393160 PMCID: PMC10892845 DOI: 10.3390/toxins16020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Irrigation with water containing a variety of microcystins (MCs) may pose a potential threat to the normal growth of agricultural plants. To investigate the phytotoxicity of MC-LR at environmental concentrations on rice (Oryza sativa L.), the characteristics of uptake and accumulation in plant tissues, as well as a series of key physio-biochemical process changes in leaves of rice seedlings, were measured at concentrations of 0.10, 1.0, 10.0, and 50.0 μg·L-1 in hydroponic nutrient solutions for 7, 15, 20, and 34 days. Results showed that MC-LR could be detected in rice leaves and roots in exposure groups; however, a significant accumulation trend of MC-LR in plants (BCF > 1) was only found in the 0.10 μg·L-1 group. The time-course study revealed a biphasic response of O2•- levels in rice leaves to the exposure of MC-LR, which could be attributed to the combined effects of the antioxidant system and detoxification reaction in rice. Exposure to 1.0-50.0 μg·L-1 MC-LR resulted in significant depletion of GSH and MDA contents in rice leaves at later exposure times (15-34 days). Low MC-LR concentrations promoted nitric oxide synthase (NOS) activity, whereas high concentrations inhibited NOS activity during the later exposure times. The reduced sucrose synthase (SS) activities in rice exposed to MC-LR for 34 days indicated a decrease in the carbon accumulation ability of plants, and therefore may be directly related to the inhibition of plant growth under MC exposure. These findings indicate that the normal physiological status would be disrupted in terrestrial plants, even under exposure to low concentrations of MC-LR.
Collapse
Affiliation(s)
- Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Yue Shi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
- College of Defense Engineering, Army Engineering University, Nanjing 210007, China
| | - Feng Tian
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Xuzhi Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| | - Rongrong Ying
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; (J.J.)
| |
Collapse
|
5
|
Wang Q, Lin G, Zeng J, Tang J, Wang L. As(III)-Oxidizing Bacteria Alleviate Arsenite Toxicity via Reducing As Accumulation, Elevating Antioxidative Activities and Modulating Ionome in Rice (Oryza sativa L.). Curr Microbiol 2023; 80:320. [PMID: 37587202 DOI: 10.1007/s00284-023-03434-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Paddy rice trends to accumulate more arsenic (As) from soils than other terrestrial crops. The toxicity and mobility of As mainly depend on its chemical species. Transformation of arsenite [As(III)] into arsenate [As(V)] would be a promising method to mitigate As toxicity. In the current study, As(III)-oxidizing strain SMS11 isolated from As-contaminated soils was employed for As remediation. Co-cultured with SMS11 alleviated As(III) stress to the rice plants by increasing the length and biomass of rice shoots up to 10% and 15%, respectively. Evaluation of oxidative stress indices showed that the activity of catalase in the rice shoots was weakened when exposed to As(III), increasing the risk of hydroxyl radical (·OH) formation. When co-cultivated with the bacteria, ·OH formation was significantly inhibited in the rice shoots. The ionomes of the rice plants were impacted by the external conditions. As(III) stress significantly disturbed ionome homeostasis in the rice plants. Uptake of As simultaneously elevated the levels of macro and nutrient elements such as Mg, P, K, Ca, and Zn in the rice shoots. The ionomic variation in the rice plants under As(III) stress was mitigated by inoculated with SMS11. The results represented that the As(III)-oxidizing bacteria alleviated external As(III) stress to the rice plants through elevating antioxidative activities and modulating ionome homeostasis.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guobing Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiayuan Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
6
|
Veerabadhran M, Manivel N, Sarvalingam B, Seenivasan B, Srinivasan H, Davoodbasha M, Yang F. State-of-the-art review on the ecotoxicology, health hazards, and economic loss of the impact of microcystins and their ultrastructural cellular changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106417. [PMID: 36805195 DOI: 10.1016/j.aquatox.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Hunan 410078, China
| | - Nagarajan Manivel
- ICAR-Central Marine Fisheries Research Institute, Chennai 600 0028, India
| | - Barathkumar Sarvalingam
- National Centre for Coastal Research (NCCR), Ministry of Earth Science, NIOT Campus, Chennai 600100, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Zhang D, Yuan L, Zhang L, Qiu T, Liao Q, Xiang J, Luo L, Xiong X. Pathological and biochemical characterizations of microcystin-LR-induced liver and kidney damage in chickens after acute exposure. Toxicon 2022; 220:106952. [DOI: 10.1016/j.toxicon.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
8
|
Rodrigues NB, Pitol DL, Tocchini de Figueiredo FA, Tenfen das Chagas Lima AC, Burdick Henry T, Mardegan Issa JP, de Aragão Umbuzeiro G, Pereira BF. Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon 2022; 211:70-78. [DOI: 10.1016/j.toxicon.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
|