1
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
Yuan Y, Ye X, Jia Y, Wu Y, Zhang Y. CuFeS 2/GAC particle combined with electrochemical activation of persulfates for efficient degradation of carbamazepine. CHEMOSPHERE 2024; 364:143138. [PMID: 39168379 DOI: 10.1016/j.chemosphere.2024.143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Electrochemically activated persulfate is a potential advanced oxidation process due to its advantages of environmental friendliness, high efficiency, and convenient operation. An Fe-Cu-S granular activated carbon (CuFeS2/GAC, abbreviated as FCSG) particles electrode was developed and applied to degrade carbamazepine (CBZ) combined with electrochemical activation of persulfate (E-PDS-FCSG) in this work. Compared to two-dimensional electrochemical process (E-PDS), the three-dimensional (3D) E-PDS-FCSG process exhibited higher removal efficiency of CBZ and lower energy consumption. The removal efficiency of CBZ and power consumption increased by 96% and reduced by 67%, respectively. Over 98% of CBZ removal rate was reached within 25 min. Apart from the same free radicals in two-dimensional electrochemical process, both Fe2+ and Cu+ on the surface of three-dimensional particle electrodes can directly activate PDS to produce SO4•-, and the existence of S2- strengthens the circulation of Fe3+/Fe2+ and Cu2+/Cu+. Furthermore, FCSG particle electrode can not only directly enhance the activation of PDS, but also accelerate the electron transfer, and then effectively promoting reactive species generation. LC-MS analysis showed that the main degradation pathways of CBZ involved decarbonylation, deamination, dealkylation, ring opening and mineralization. Moreover, after five cycle experiments, over 80% of CBZ removal rate could be achieved, demonstrating that the E-PDS-FCSG system had excellent electrocatalytic performance and good stability. These findings indicate that FCSG is a promising material and could be used as a particle electrode for removing organic pollutants from water.
Collapse
Affiliation(s)
- YuRui Yuan
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Xincheng Ye
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yan Jia
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yuan Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| |
Collapse
|
3
|
Wang R, Dai Z, Zhang W, Ma C. The electrocatalytic degradation of 1,4-dioxane by Co-Bi/GAC particle electrode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1132-1148. [PMID: 39215728 DOI: 10.2166/wst.2024.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Efficient degradation of industrial organic wastewater has become a significant environmental concern. Electrochemical oxidation technology is promising due to its high catalytic degradation ability. In this study, Co-Bi/GAC particle electrodes were prepared and characterized for degradation of 1,4-dioxane. The electrochemical process parameters were optimized by response surface methodology (RSM), and the influence of water quality factors on the removal rate of 1,4-dioxane was investigated. The results showed that the main influencing factors were the Co/Bi mass ratio and calcination temperature. The carrier metals, Co and Bi, existed mainly on the GAC surface as Co3O4 and Bi2O3. The removal of 1,4-dioxane was predominantly achieved through the synergistic reaction of electrode adsorption, anodic oxidation, and particle electrode oxidation, with ·OH playing a significant role as the main active free radical. Furthermore, the particle electrode was demonstrated in different acid-base conditions (pH = 3, 5, 7, 9, and 11). However, high concentrations of Cl- and NO3- hindered the degradation process, potentially participating in competitive reactions. Despite this, the particle electrode exhibited good stability after five cycles. The results provide a new perspective for constructing efficient and stable three-dimensional (3D) electrocatalytic particle electrodes to remove complex industrial wastewater.
Collapse
Affiliation(s)
- Rui Wang
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| | - Zhineng Dai
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China; Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen, China E-mail:
| | - Wenqi Zhang
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| | - Chao Ma
- School of Environmental Science and Technology, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
4
|
Rahimi F, Nasiri A, Hashemi M, Rajabi S, Abolghasemi S. Advances in three-dimensional electrochemical degradation: A comprehensive review on pharmaceutical pollutants removal from aqueous solution. CHEMOSPHERE 2024; 362:142620. [PMID: 38880265 DOI: 10.1016/j.chemosphere.2024.142620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Water pollution, stemming from various contaminants including organic and pharmaceutical pollutants, poses a significant global challenge. Amidst the array of methods available for pollutant mitigation, the three-dimensional electrochemical approach emerges as a standout solution due to its environmental compatibility, cost-effectiveness, and rapid efficiency. This study delves into the efficacy of three-dimensional electrochemical processes in purging organic and pharmaceutical pollutants from aqueous media. Existing research indicates that the three-dimensional electrochemical process, particularly when employing particle electrodes, exhibits notable success in degrading organic and pharmaceutical pollutants. This achievement is largely attributed to the ample specific surface area of particle electrodes and the shortened mass transfer distance, which collectively enhance efficiency in comparison to traditional two-dimensional electrochemical methods. Moreover, this approach is lauded for its environmental friendliness and cost-effectiveness. However, it is imperative to note that the efficacy of the process is subject to various factors including temperature, pH levels, and current intensity. While the addition of oxidants can augment process efficiency, it also carries the risk of generating intermediate compounds that impede the reaction. In conclusion, the three-dimensional electrochemical method proves to be a viable and practical approach, provided that process conditions are meticulously considered and adhered to. Offering advantages from both environmental and economic perspectives, this method presents a promising alternative to conventional water and wastewater treatment techniques.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Nasiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Majid Hashemi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeed Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sahar Abolghasemi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Li G, Liu W, Gao S, Lu H, Fu D, Wang M, Liu X. MXene-based composite aerogels with bifunctional ferrous ions for the efficient degradation of phenol from wastewater. CHEMOSPHERE 2024; 358:142151. [PMID: 38679169 DOI: 10.1016/j.chemosphere.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Herein, MXene-based composite aerogel (MXene-Fe2+ aerogel) are constructed by a one-step freeze-drying method, using Ti3C2Tx MXene layers as substrate material and ferrous ion (Fe2+) as crosslinking agent. With the aid of the Fe2+ induced Fenton reaction, the synthesized aerogels are used as the particle electrodes to remove phenol from wastewater with three-dimensional electrode technology. Combined with the dual roles of Fe2+ and the highly conductive MXene, the obtained particle electrode possesses extremely effective phenol degradation. The effects of experiment parameters such as Fe2+ to MXene ratio, particle electrode dosage, applied voltage, and initial pH of solution on the removal of phenol are discussed. At pH = 2.5, phenol with 50 mg/L of initial concentration can be completely removed within 50 min at 10 V with the particle electrode dosage of 0.56 g/L. Finally, the mechanism of degradation is explored. This work provides an effective way for phenol degradation by MXene-based aerogel, which has great potential for the degradation of other organic pollutants in wastewater.
Collapse
Affiliation(s)
- Gaoyuan Li
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Weifeng Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Shaojun Gao
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Huayu Lu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Dongju Fu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China.
| | - Meiling Wang
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
6
|
Xu Y, Li Q, Tang Y, Huang H, Ren H. Electrocatalytic denitrification biofilter for advanced purification of chlorophenols via ceramsite-based Ti/SnO 2-Sb particle electrode: Performance, microbial community structure and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123594. [PMID: 38378077 DOI: 10.1016/j.envpol.2024.123594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
In response to the demand for advanced purification of industrial secondary effluent, a new method has been developed for treating chlorophenol wastewater using the novel ceramsite-based Ti/SnO2-Sb particle electrodes (Ti/SnO2-Sb/CB) enhanced electrocatalytic denitrification biofilter (EDNBF-P) to achieve removal of chlorophenols (CPs), denitrification, and reduction of effluent toxicity. The results showed that significantly improved CPs and TN removal efficiency at low COD/N compared to conventional denitrification biofilter, with CPs removal rates increasing by 0.33%-59.27% and TN removal rates increasing by 12.53%-38.92%. Under the conditions of HRT = 2h, 3V voltage, charging times = 12h, and 25 °C, the concentrations of the CPs in the effluent of EDNBF-P were all below 1 mg/L, the TN concentration was below 15 mg/L, while the effluent toxicity reached the low toxicity level. Additionally, the Ti/SnO2-Sb/CB particle electrodes effectively alleviated the accumulation of NO2--N caused by applied voltage. The Silanimonas, Pseudomonas and Rhodobacter was identified as the core microorganism for denitrification and toxicity reduction. This study validated that EDNBF-P could achieve synergistic treatment of CPs and TN through electrocatalysis and microbial degradation, providing a methodological support for achieving advanced purification of chlorophenol wastewater with low COD/N in industrial applications.
Collapse
Affiliation(s)
- Yujin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yingying Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
7
|
Li Z, Yang D, Li S, Yang L, Yan W, Xu H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169043. [PMID: 38070567 DOI: 10.1016/j.scitotenv.2023.169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Disinfection, a vital barrier against pathogenic microorganisms, is crucial in halting the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for the inactivation of pathogenic microorganisms from water and wastewater, primarily owing to their simplicity, efficiency, and eco-friendliness. This review succinctly outlined the core mechanisms of electrochemical disinfection (ED) and systematically examined the factors influencing its efficacy, including anode materials, system conditions, and target species. Additionally, the practical application of ED in water and wastewater treatment was comprehensively reviewed. Case studies involving various scenarios such as drinking water, hospital wastewater, black water, rainwater, and ballast water provided concrete instances of the expansive utility of ED. Finally, coupling ED with other technologies and the resulting synergies were introduced as pivotal foundations for subsequent engineering advancements.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China.
| |
Collapse
|
8
|
Li S, Jiang B, Liu G, Shi C, Yu H, Lin Y. Recent progress of particle electrode materials in three-dimensional electrode reactor: synthesis strategy and electrocatalytic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11490-11506. [PMID: 38198081 DOI: 10.1007/s11356-023-31807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
With the complete promotion of a green, low-carbon, safe, and efficient economic system as well as energy system, the promotion of clean governance technology in the field of environmental governance becomes increasingly vital. Because of its low energy consumption, great efficiency, and lack of secondary pollutants, three-dimensional (3D) electrode technology is acknowledged as an environmentally beneficial and sustainable way to managing clean surroundings. The particle electrode is an essential feature of the 3D electrode reactor. This study provides an in-depth examination of the most current advancements in 3D electrode technology. The significance of 3D electrode technology is emphasized, with an emphasis on its use in a variety of sectors. Furthermore, the particle electrode synthesis approach and mechanism are summarized, providing vital insights into the actual implementation of this technology. Furthermore, by a metrological examination of the research literature in this sector, the paper expounds on the potential and obstacles in the development and popularization of future technology.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Bo Jiang
- Jilin Research and Design Institute of Building Science (Jilin Province Construction Engineering Quality Test Center), Changchun, 130011, China
| | - Gen Liu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chunyan Shi
- The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka, Japan
| | - Hongbin Yu
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yingzi Lin
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| |
Collapse
|
9
|
Fang C, Xie S, Xiao T, Liu Z, Hong H, Gong S, Liu X. Pretreatment of hypersaline and high-organic wastewater with a three-dimensional electrocatalytic system: a pilot-scale study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:562-575. [PMID: 38358489 PMCID: wst_2024_018 DOI: 10.2166/wst.2024.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The three-dimensional electrocatalytic oxidation (3DEO) is a promising electrochemical system in the treatment of refractory wastewater, but still far from large-scale applications. In this work, we prepared 146.5 Kg Ti-Sn-Sb@γ-Al2O3 particle electrodes to construct a 3DEO system for the pretreatment of hypersaline and high-organic wastewater in an industrial park sewage plant, with activated carbon particle electrodes as a comparison. The average COD removal rates of Ti-Sn-Sb@γ-Al2O3 and activated carbon-based 3DEO systems were 24.43 and 48.73%, respectively, and the energy consumption of the two 3DEO systems were 102.8 and 31.4 kWh/Kg COD, respectively. However, compared to the negligible enhancement of wastewater biodegradability in the activated carbon 3DEO system, the Ti-Sn-Sb@γ-Al2O3 3DEO system greatly improved the biochemical index (B/C) from 0.021 to 0.166 (by 690.5%). Due to its superior catalytic capacity, Ti-Sn-Sb@γ-Al2O3 outperforms activated carbon in improving biodegradability as the latter relies mainly on adsorption. The results of this work provide a 3DEO engineering practice experience on the pretreatment of hypersaline and high-organic wastewater.
Collapse
Affiliation(s)
- Chengyi Fang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China E-mail:
| | - Shiwei Xie
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan 430065, China
| | - Tian Xiao
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhi Liu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hui Hong
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shuyi Gong
- Gongan County Jiayuan Water Affairs Co., Ltd, Jingzhou 434000, China
| | - Xixiang Liu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| |
Collapse
|
10
|
Wu Q, Chen Y, He Y, Cheng Q, Wu Q, Liu Z, Li Y, Yang Z, Tan Y, Yuan Y. Enhanced nitrogen and phosphorus removal by a novel ecological floating bed integrated with three-dimensional biofilm electrode system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119346. [PMID: 37866187 DOI: 10.1016/j.jenvman.2023.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The ecological floating bed (EFB) has been used extensively for the purification of eutrophication water. However, the traditional EFB (T-EFB) often exhibits a decline in nitrogen and phosphorus removal because of the limited adsorption capacity of fillers and inadequate electron donors. In the present study, a series of electrolysis-ecological floating beds (EC-EFBs) were constructed to investigate the decontamination performance of conventional pollutants. EC-EFB outperformed T-EFB in terms of nitrogen and phosphorus removal. Its removal efficiency of total nitrogen and total phosphorus was 20.51-32.95% and 45.06-96.20%, which were higher than that in T-EFB.. Moreover, the plants in EC-EFB demonstrated higher metabolic activity than those in T-EFB. Under the electrolysis condition of 0.51 mA/cm2 for 24 h, the malondialdehyde content and superoxide dismutase activity in EC-EFB were 6.08 nmol/g and 22.61 U/g, which were significantly lower compared to T-EFB (38.65 nmol/g and 26.13 U/g). And the soluble protein content of plant leaves increased from 3.31 mg/g to 5.72 mg/g in EC-EFB. Microbial analysis revealed that electrolysis could significantly change the microbial community and facilitate the proliferation of nitrogen-functional microbes, such as Thermomonas, Hydrogenophaga, Deinococcus, and Zoogloea. It is important to highlight that the hydrogen evolution reaction at the cathode area facilitated phosphorus removal in EC-EFB, thereby inhibiting phosphorus leaching. This study provides a promising and innovative technology for the purification of eutrophic water.
Collapse
Affiliation(s)
- Qingyu Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yang He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiming Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhenmei Yang
- Jiangjin Ecological Environment Monitoring Station, Chongqing, 402260, China
| | - Yuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
11
|
Xiao H, Hao Y, Wu J, Meng X, Feng F, Xu F, Luo S, Jiang B. Differentiating the reaction mechanism of three-dimensionally electrocatalytic system packed with different particle electrodes: Electro-oxidation versus electro-fenton. CHEMOSPHERE 2023; 325:138423. [PMID: 36934480 DOI: 10.1016/j.chemosphere.2023.138423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Recently, there are still some controversial mechanisms of the 3D electrocatalytic oxidation system, which would probably confound its industrial application. From the conventional viewpoint, the Ti4O7 material may be the desired particle electrodes in the 3D system since its high oxygen evolution potential favors the production of •OH via H2O splitting reaction at the anode side of Ti4O7 particle electrodes. In fact, the incorporation of Ti4O7 particles showed phenol degradation of 88% and COD removal of 51% within 120 min, under the optimum conditions at energy consumption of 0.668 kWh g-1 COD, the performance of which was much lower than those in many previous literatures. In contrast, the prepared carbon black-polytetrafluoroethylene composite (CB-PTFE) particles with abundant oxygen-containing functional groups could yield considerable amounts of H2O2 (200 mg L-1) in the 3D reactor and achieved a complete degradation of phenol and COD removal of 80% in the presence of Fe2+, accompanying a low energy consumption of only 0.080 kWh g-1 COD. It was estimated that only 20% of Ti4O7 particles near the anode attained the potential over 2.73 V/SCE at 30 mA cm-2 based on the potential test and simulation, responsible for the low yield of •OH via the H2O splitting on Ti4O7 (1.74 × 10-14 M), and the main role of Ti4O7 particle electrodes in phenol degradation was through direct oxidation. For the CB-PTFE-based 3D system, current density of 10 mA cm-2 was sufficient for all the CB-PTFE particles to attain cathodic potential of -0.67 V/SCE, conducive to the high yield of H2O2 and •OH (9.11 × 10-14 M) in the presence of Fe2+, and the •OH-mediated indirect oxidation was mainly responsible for the phenol degradation. Generally, this study can provide a deep insight into the 3D electrocatalytic oxidation technology and help to develop the high-efficiency and cost-efficient 3D technologies for industrial application.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jingli Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xianzhe Meng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Fei Feng
- Shandong Tiantai Environmental Technology Co., Ltd., Jinan, PR China
| | - Fengqi Xu
- SunRui Marine Environment Engineering Company Ltd, Qingdao, 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
12
|
Ma J, Wang X, Sun H, Tang W, Wang Q. A review on three-dimensional electrochemical technology for the antibiotic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27565-2. [PMID: 37213011 DOI: 10.1007/s11356-023-27565-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
The potential genotoxicity and non-biodegradability of antibiotics in the natural water bodies threaten the survival of various living things and cause serious environmental pollution and destruction. Three-dimensional (3D) electrochemical technology is considered a powerful means for antibiotic wastewater treatment as it can degrade non-biodegradable organic substances into non-toxic or harmless substances and even completely mineralize them under the action of electric current. Therefore, antibiotic wastewater treatment using 3D electrochemical technology has now become a hot research topic. Thus, in this review, a detailed and comprehensive investigation was conducted on the antibiotic wastewater treatment using 3D electrochemical technology, including the structure of the reactor, electrode materials, the influence of operating parameters, reaction mechanism, and combination with other technologies. Many studies have shown that the materials of electrode, especially particle electrode, have a great effect on the antibiotic wastewater treatment efficiency. The influence of operating parameters such as cell voltage, solution pH, and electrolyte concentration was very significant. Combination with other technologies such as membrane and biological technologies has effectively increased antibiotic removal and mineralization efficiency. In conclusion, the 3D electrochemical technology is considered as a promising technology for the antibiotic wastewater treatment. Finally, the possible research directions of the 3D electrochemical technology for antibiotic wastewater treatment were proposed.
Collapse
Affiliation(s)
- Jinsong Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Electrical Engineering, Kim Chaek University of Technology, Kyogu Dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaona Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weiqi Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory On Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
14
|
The catalytic performance of CuFe 2O 4@CQD nanocomposite as a high-perform heterogeneous nanocatalyst in nitroaniline group reduction. Sci Rep 2023; 13:3329. [PMID: 36849500 PMCID: PMC9971249 DOI: 10.1038/s41598-023-28935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
In this study, we fabricated an economical, non-toxic, and convenient magnetic nanocomposite of CuFe2O4 nanoparticles (NPs)/carbon quantum dots (CQDs) of citric acid via the co-precipitation method. Afterward, obtained magnetic nanocomposite was used as a nanocatalyst to reduce the ortho-nitroaniline (o-NA) and para-nitroaniline (p-NA) using a reducer agent of sodium borohydride (NaBH4). To investigate the functional groups, crystallite, structure, morphology, and nanoparticle size of the prepared nanocomposite, FT-IR, XRD, TEM, BET, and SEM were employed. The catalytic performance of the nanocatalyst was experimentally evaluated based on the ultraviolet-visible absorbance to assess the reduction of o-NA and p-NA. The acquired outcomes illustrated that the prepared heterogeneous catalyst significantly enhanced the reduction of o-NA and p-NA substrates. The analysis of the absorption showed a remarkable decrease for ortho-NA and para-NA at λmax = 415 nm in 27 s and λmax = 380 nm in 8 s, respectively. The constant rate (kapp) of ortho-NA and para-NA at the stated λmax was 8.39 × 10-2 s-1 and 5.48 × 10-1 s-1. The most highlighted result of this work was that the CuFe2O4@CQD nanocomposite fabricated from citric acid performed better than absolute CuFe2O4 NPs, since nanocomposite containing CQDs had a more significant impact than copper ferrite NPs.
Collapse
|
15
|
Ren X, Song K, Zhang Q, Xu L, Yu Z, Tang P, Pan Z. Performance of a Three-Dimensional Electrochemical Reactor (3DER) on Bisphenol A Degradation. Front Chem 2022; 10:960003. [PMID: 35910742 PMCID: PMC9337772 DOI: 10.3389/fchem.2022.960003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study constructed a three-dimensional electrochemical reactor (3DER) using meshed stainless steel sheets and titanic magnetite particles (TMP) to investigate bisphenol A (BPA) degradation through the synergistic action of electrical current and TMP. We examined some TMP characteristics, such as particle size, specific surface areas, X-ray diffraction, surface imaging, elemental constituents, and electrical resistivity. It was found that TMP was a micron-level material with excellent electrical conductivity, and it could be regarded as a magnetite-based material comprising Fe(II) and Fe(III). The single-factor experiment determined the optimal conditions for BPA removal in 3DER, specifically by introducing 200 ml of BPA-simulated wastewater (10 mg L−1) into 3DER. At the initial pH of 9.00, current and electrodes gap of 300 mA and 15 mm, respectively, and adding 1 ml of 0.5 M potassium peroxymonosulfate and 1 g TMP, > 98% of BPA was removed after 55 min of electrochemical reaction. In addition, liquid chromatography–mass spectrometry identified the intermediates formed during the BPA treatment, showing two possible pathways for BPA degradation. The final degradation intermediates were chain organics with simple molecular structures. This research provided an understanding of the potential application of 3DER for BPA removal in water.
Collapse
Affiliation(s)
- Xu Ren
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Haitian Water Group CO, Ltd, AVIC International Exchange Center, Chengdu, China
- Postdoctoral Research Station in Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Kai Song
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Kai Song,
| | - Qiaoyun Zhang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
| | - Linghan Xu
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
| | - Zhuyi Yu
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
| | - Peixin Tang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology, Chengdu University, Chengdu, China
- Postdoctoral Research Station of Haitian Water Group CO, Ltd, AVIC International Exchange Center, Chengdu, China
| | - Zhicheng Pan
- Postdoctoral Research Station of Haitian Water Group CO, Ltd, AVIC International Exchange Center, Chengdu, China
| |
Collapse
|
16
|
Ma J, Gao M, Liu Q, Wang Q. High efficiency three-dimensional electrochemical treatment of amoxicillin wastewater using Mn-Co/GAC particle electrodes and optimization of operating condition. ENVIRONMENTAL RESEARCH 2022; 209:112728. [PMID: 35081359 DOI: 10.1016/j.envres.2022.112728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In this work, Mn-Co/GAC particle electrode was prepared by loading Mn and Co as catalysts on granular activated carbon (GAC) and used in a three-dimensional (3D) electrochemical system for mineralization of amoxicillin wastewater. Observation results by SEM, EDS and XRD confirmed that Mn and Co catalysts were successfully loaded onto GAC. The electrochemical properties were measured using an electrochemical workstation. Mn-Co/GAC had a much higher oxygen evolution potential (1.46V) than GAC (1.1V), which demonstrated that it could effectively reduce the oxygen evolution side reaction. In addition, Mn-Co/GAC had an electrochemically active surface area 1.34 times that of GAC and a much smaller mass transfer resistance than GAC, which could provide favorable conditions for the degradation of pollutants. The investigation of the influences of single operating parameters on total organic carbon (TOC) removal rate and electrical energy consumption (EEC) indicated that current density and treatment time had the greatest effect. In order to maximize TOC removal rate and minimize EEC, optimization of operating parameters was also carried out using response surface method in combination with central composite design. The optimal operating parameters were determined as current density of 5.68 mA/cm2, electrolyte concentration of 0.127M, particle electrode dosage of 31.14g and treatment time of 120min. Under this optimum operating condition, TOC removal rate of 85.24% and amoxicillin removal rate of 100% could be achieved with a low EEC of 0.073 kWh/g TOC. In addition, TOC removal rate and EEC were significantly improved compared to the use of bare GAC as particle electrode under the same operating conditions, demonstrating the excellent electrocatalytic ability of the new particle electrode Mn-Co/GAC. A possible mechanism of enhanced amoxicillin and TOC removal was also recommended. In summary, the 3D electrochemical method using Mn-Co/GAC particle electrodes is a suitable choice for amoxicillin wastewater treatment.
Collapse
Affiliation(s)
- Jinsong Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Department of Electrical Engineering, Kim Chaek University of Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qin Liu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
17
|
Fluidized ZnO@BCFPs Particle Electrodes for Efficient Degradation and Detoxification of Metronidazole in 3D Electro-Peroxone Process. MATERIALS 2022; 15:ma15103731. [PMID: 35629757 PMCID: PMC9144341 DOI: 10.3390/ma15103731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023]
Abstract
A novel material of self-shaped ZnO-embedded biomass carbon foam pellets (ZnO@BCFPs) was successfully synthesized and used as fluidized particle electrodes in three-dimensional (3D) electro-peroxone systems for metronidazole degradation. Compared with 3D and 2D + O3 systems, the energy consumption was greatly reduced and the removal efficiencies of metronidazole were improved in the 3D + O3 system. The degradation rate constants increased from 0.0369 min-1 and 0.0337 min-1 to 0.0553 min-1, respectively. The removal efficiencies of metronidazole and total organic carbon reached 100% and 50.5% within 60 min under optimal conditions. It indicated that adding ZnO@BCFPs particle electrodes was beneficial to simultaneous adsorption and degradation of metronidazole due to improving mass transfer of metronidazole and forming numerous tiny electrolytic cells. In addition, the process of metronidazole degradation in 3D electro-peroxone systems involved hydroxyethyl cleavage, hydroxylation, nitro-reduction, N-denitrification and ring-opening. The active species of ·OH and ·O2- played an important role. Furthermore, the acute toxicity LD50 and the bioconcentration factor of intermediate products decreased with the increasing reaction time.
Collapse
|
18
|
Liu X, Chen Z, Du W, Liu P, Zhang L, Shi F. Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114775. [PMID: 35245840 DOI: 10.1016/j.jenvman.2022.114775] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The integrated high-efficiency treatment technology for dye industry wastewater is one of the current research hot topic in industrial wastewater treatment area. This article reports a new fluidized three-dimensional electrochemical treatment process integrating activated carbon adsorption, direct electro-oxidation and ·OH oxidation. In the process, activated carbon is polarized in a fluidized bed electrochemical reactor to enhance the direct electro-oxidation and ·OH oxidation, and there is a synergistic effect of effective adsorption and electrochemical oxidation to strengthen the treatment efficiency. When 200 mg/L methyl orange is processed, its removal rate reaches 99.9% in 30min, and the synergistic efficiency is 57.3%. After 8 cycles of activated carbon reusage in the process, the removal rate of methyl orange still kept at 89.2%. It is also founded that the activated carbon maintains 64.5% of its original adsorption capacity during the cycle. These results shows its interesting application potential in the fields of high-efficiency, low-cost and green treatment of various industrial organic wastewaters. Further improvements should focus on the development of continuous operation model and the improvement of the activated carbon electro-catalytic performance and the practical regeneration ways of the activated carbon particle electrodes.
Collapse
Affiliation(s)
- Xiangjing Liu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P.R. China.
| | - Zhimin Chen
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P.R. China.
| | - Wenqiao Du
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P.R. China.
| | - Pengfei Liu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P.R. China.
| | - Long Zhang
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P.R. China.
| | - Fengwei Shi
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P.R. China.
| |
Collapse
|
19
|
Desalination and Detoxification of Textile Wastewater by Novel Photocatalytic Electrolysis Membrane Reactor for Ecosafe Hydroponic Farming. MEMBRANES 2021; 12:membranes12010010. [PMID: 35054537 PMCID: PMC8777688 DOI: 10.3390/membranes12010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023]
Abstract
In this study, a novel photoelectrocatalytic membrane (PECM) reactor was tested as an option for the desalination, disinfection, and detoxification of biologically treated textile wastewater (BTTWW), with the aim to reuse it in hydroponic farming. The anionic ion exchange (IEX) process was used before PECM treatment to remove toxic residual dyes. The toxicity evaluation for every effluent was carried out using the Vibrio fischeri, Microtox® test protocol. The disinfection effect of the PECM reactor was studied against E. coli. After PECM treatment, the 78.7% toxicity level of the BTTWW was reduced to 14.6%. However, photocatalytic desalination during treatment was found to be slow (2.5 mg L-1 min-1 at 1 V potential). The reactor demonstrated approximately 52% COD and 63% TOC removal efficiency. The effects of wastewater reuse on hydroponic production were comparatively investigated by following the growth of the lettuce plant. A detrimental effect was observed on the lettuce plant by the reuse of BTTWW, while no negative impact was reported using the PECM treated textile wastewater. In addition, all macro/micronutrient elements in the PECM treated textile wastewater were recovered by hydroponic farming, and the PECM treatment may be an eco-safe wastewater reuse method for crop irrigation.
Collapse
|