1
|
Alves C, Cipoli Y, Furst L, Vicente E, Ituamba J, Leitão A. Indoor/outdoor air quality in primary schools in Luanda. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126244. [PMID: 40222610 DOI: 10.1016/j.envpol.2025.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Despite the numerous studies on particulate matter and gaseous pollutants in school environments in developed countries, air quality in African schools has been largely neglected. In this work, the atmospheric concentrations of particulate matter (PM10) were evaluated in various classrooms and outdoor courtyards of four primary schools in Luanda, Angola, using photometric monitors and gravimetric samplers. Comfort parameters, carbon oxides (CO and CO2) and total volatile organic compounds (TVOCs) were measured in real time. Passive sampling was also used to assess the levels of various gaseous pollutants: benzene, toluene, ethylbenzene, and xylenes (BTEX), ozone (O3), nitrogen dioxide (NO2), and carbonyl compounds. The daily PM10 concentrations (62.0 ± 37.0 μg/m3) exceeded the WHO guideline value on 68% of the days. Indoor PM10 levels were usually lower than outdoors, except at one school with poor structural conditions and unpaved roads in the vicinity. Average temperature and relative humidity levels consistently exceeded recommended standards, potentially impacting academic performance. CO2 and TVOCs levels followed occupancy patterns, with elevated concentrations exceeding international standards in just one classroom due to poor ventilation. NO2 concentrations in the classrooms were very similar to those recorded outdoors, whereas BTEX levels slightly exceeded those measured in the courtyards. These compounds were primarily attributed to emissions from road traffic. O3 levels in the classrooms were, on average, 2.3 times lower than those outdoors. For most carbonyl compounds, indoor concentrations were 1.8-3.8 times higher than those measured outdoors, suggesting the presence of active emission sources indoors. Butyraldehyde, formaldehyde, and hexaldehyde were the most abundant carbonyl compounds. While BTEX, O3, and NO2 levels in Luanda aligned with those reported for European schools, formaldehyde concentrations were lower, likely due to better natural ventilation supported by the milder climate.
Collapse
Affiliation(s)
- Célia Alves
- Departamento de Ambiente e Ordenamento, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Yago Cipoli
- Departamento de Ambiente e Ordenamento, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Leonardo Furst
- Departamento de Ambiente e Ordenamento, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Estela Vicente
- Departamento de Ambiente e Ordenamento, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joaquim Ituamba
- Laboratório de Engenharia da Separação, Reação e Ambiente, Universidade Agostinho Neto, Avenida Ho Chi Minh n° 201, Luanda, Angola
| | - Anabela Leitão
- Laboratório de Engenharia da Separação, Reação e Ambiente, Universidade Agostinho Neto, Avenida Ho Chi Minh n° 201, Luanda, Angola
| |
Collapse
|
2
|
Lung SCC, Tsou MCM, Cheng CHC, Setyawati W. Peaks, sources, and immediate health impacts of PM 2.5 and PM 1 exposure in Indonesia and Taiwan with microsensors. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:264-277. [PMID: 38806636 PMCID: PMC12009734 DOI: 10.1038/s41370-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Microsensors have been used for the high-resolution particulate matter (PM) monitoring. OBJECTIVES This study applies PM and health microsensors with the objective of assessing the peak exposure, sources, and immediate health impacts of PM2.5 and PM1 in two Asian countries. METHODS Exposure assessment and health evaluation were carried out for 50 subjects in 2018 and 2019 in Bandung, Indonesia and for 55 subjects in 2019 and 2020 in Kaohsiung, Taiwan. Calibrated AS-LUNG sets and medical-certified RootiRx® sensors were used to assess PM and heart-rate variability (HRV), respectively. RESULTS Overall, the 5-min mean exposure of PM2.5 and PM1 was 30.4 ± 20.0 and 27.0 ± 15.7 µg/m3 in Indonesia and 14.9 ± 11.2 and 13.9 ± 9.8 µg/m3 in Taiwan, respectively. The maximum 5-min peak PM2.5 and PM1 exposures were 473.6 and 154.0 µg/m3 in Indonesia and 467.4 and 217.7 µg/m3 in Taiwan, respectively. Community factories and mosquito coil burning are the two most important exposure sources, resulting in, on average, 4.73 and 5.82 µg/m3 higher PM2.5 exposure increments for Indonesian subjects and 10.1 and 9.82 µg/m3 higher PM2.5 exposure for Taiwanese subjects compared to non-exposure periods, respectively. Moreover, agricultural waste burning and incense burning were another two important exposure sources, but only in Taiwan. Furthermore, 5-min PM2.5 and PM1 exposure had statistically significantly immediate impacts on the HRV indices and heart rates of all subjects in Taiwan and the scooter subjects in Indonesia with generalized additive mixed models. The HRV change for a 10 µg/m3 increase in PM2.5 and PM1 ranged from -0.9% to -2.5% except for ratio of low-high frequency, with greater impacts associated with PM1 than PM2.5 in both countries. IMPACT STATEMENT This work highlights the ability of microsensors to capture high peaks of PM2.5 and PM1, to identify exposure sources through the integration of activity records, and to assess immediate changes in heart rate variability for a panel of approximately 50 subjects in Indonesia and Taiwan. This study stands out as one of the few to demonstrate the immediate health impacts of peak PM, complementing to the short-term (days or weeks) or long-term effects (months or longer) assessed in most epidemiological studies. The technology/methodology employed offer great potential for researchers in the resource-limited countries with high PM2.5 and PM1 levels.
Collapse
Affiliation(s)
- Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan, ROC.
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan, ROC.
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan, ROC.
| | | | | | - Wiwiek Setyawati
- Research Center for Climate and Atmosphere, National Research and Innovation Agency (BRIN), Kota Bandung, Indonesia
| |
Collapse
|
3
|
Pipal AS, Kaur P, Singh SP, Rohra H, Taneja A. Morphology, aspect ratio, and surface elemental composition of primary aerosol particles at urban region of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47946-47959. [PMID: 39014140 DOI: 10.1007/s11356-024-34372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
The PM2.5 and PM10 particles were characterized in terms of morphology (size and shape) and surface elemental composition at two different (traffic and industrial) locations in urban region of India and further linked to different morphological defining parameters. The overall PM2.5 and PM10 showed significant daily variability indicating higher PM10 as compared to PM2.5. PM2.5/PM10 ratio was found to be 0.58 ± 0.10 indicating the abundance of PM2.5. Soot aggregates, aluminosilicates, and brochosomes particles were classified based on morphology, aspect ratio (AR), and surface elemental composition of single particles. The linear regression analysis indicates the significant correlation between area equivalent (Daeq) and feret diameter (Dfd) (R2 0.86-0.98). Higher aspect ratio (1.48 ± 0.87-1.43 ± 0.50) was noted at traffic site as compared to industrial site (1.33 ± 0.58-1.29 ± 0.30), while circularity showed the opposite trend. Fractal dimension (Df) of soot aggregates estimated by the soot parameters method (SPM) were found to be 1.70, 1.72, and 1.88, mainly attributed to vehicular emissions, biomass, and industrial emission/coal burning, respectively. This further inferred that freshly emitted soot particles exhibited lacey in nature with spherical shape (Df 1.70) at traffic site, while at industrial location, they were different with compact shapes (Df 1.88) due to particle aging processes. This study inferred the synoptic changes in mass, chemical characteristics, and morphology of aerosol particles which provide the new insights into individual atmospheric particle and their dynamic nature.
Collapse
Affiliation(s)
- Atar Singh Pipal
- Department of Chemistry, Dr. B R Ambedkar University, Agra, 282002, India
- Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, 411008, India
| | - Parminder Kaur
- Department of Physics, Tripura University, Suryamaninagar, West Tripura, 799022, India
| | | | - Himanshi Rohra
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Ajay Taneja
- Department of Chemistry, Dr. B R Ambedkar University, Agra, 282002, India.
| |
Collapse
|
4
|
Lyu L, Xu Y, Wang H, Guo X, Gao Y, Duan S, Deng F, Guo X, Wang Y. Changes in heart rate variability of healthy subjects shortly exposed to printing shop particles and the effect of air purifier intervention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120418. [PMID: 36257562 DOI: 10.1016/j.envpol.2022.120418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Particulate matter (PM) released by printers may cause airway inflammation and cardiac electrophysiological changes. We conducted a two-stage crossover study to examine the association between short-term exposure to printing shop particles (PSPs) and the heart rate variability (HRV) among healthy volunteers, as well as to evaluate the effect of air purifier intervention. The on-site assessments of PSPs and individual HRV parameters of the volunteers were used to analyze the influence of size-fractionated PSPs and air purifier intervention on HRV at different lag times after PSPs exposure (0 min, 5 min, 15 min, and 30 min) by using the linear mixed-effects models. We observed that changes in 6 HRV parameters were associated with particle mass concentration (PMC) of PSPs, and changes in 8 HRV parameters were associated with particle number concentration (PNC) of PSPs. The sensitive HRV parameters were the square root of the mean of the sum of the squares of differences between adjacent NN intervals (rMSSD), NN50 count divided by the total number of all NN intervals (pNN50), normalized high frequency power (nHF), very high frequency power (VHF), normalized low frequency power (nLF), and the ratio of low frequency power to high frequency power (LF/HF). Most HRV parameters exhibited the strongest effect associated with PMC and PNC at a lag time of 30 min. The air purifier intervention markedly reduced the PNC and PMC of size-fractionated PSPs, enhanced 5 HRV parameters, and decreased the nLF and LF/HF. Our study suggests that short-term exposure to PSPs can affect HRV parameters, reflecting changes in cardiac autonomic nervous activity, and the use of an air purifier can reduce the concentration of PSPs and improve the autonomic nervous system activity of the exposed individuals.
Collapse
Affiliation(s)
- Lizhi Lyu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Yu Xu
- Department of Respiratory Medicine, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Hongbo Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Xin Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Yanjun Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Shumin Duan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, PR China.
| |
Collapse
|
5
|
Zhang S, Breitner S, Pickford R, Lanki T, Okokon E, Morawska L, Samoli E, Rodopoulou S, Stafoggia M, Renzi M, Schikowski T, Zhao Q, Schneider A, Peters A. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120245. [PMID: 36162563 DOI: 10.1016/j.envpol.2022.120245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
An increasing number of epidemiological studies have examined the association between ultrafine particles (UFP) and imbalanced autonomic control of the heart, a potential mechanism linking particulate matter air pollution to cardiovascular disease. This study systematically reviews and meta-analyzes studies on short-term effects of UFP on autonomic function, as assessed by heart rate variability (HRV). We searched PubMed and Web of Science for articles published until June 30, 2022. We extracted quantitative measures of UFP effects on HRV with a maximum lag of 15 days from single-pollutant models. We assessed the risk of bias in the included studies regarding confounding, selection bias, exposure assessment, outcome measurement, missing data, and selective reporting. Random-effects models were applied to synthesize effect estimates on HRV of various time courses. Twelve studies with altogether 1,337 subjects were included in the meta-analysis. For an increase of 10,000 particles/cm3 in UFP assessed by central outdoor measurements, our meta-analysis showed immediate decreases in the standard deviation of the normal-to-normal intervals (SDNN) by 4.0% [95% confidence interval (CI): 7.1%, -0.9%] and root mean square of successive R-R interval differences (RMSSD) by 4.7% (95% CI: 9.1%, 0.0%) within 6 h after exposure. The immediate decreases in SDNN and RMSSD associated with UFP assessed by personal measurements were smaller and borderline significant. Elevated UFP were also associated with decreases in SDNN, low-frequency power, and the ratio of low-frequency to high-frequency power when pooling estimates of lags across hours to days. We did not find associations between HRV and concurrent-day UFP exposure (daily average of at least 18 h) or exposure at lags ≥ one day. Our study indicates that short-term exposure to ambient UFP is associated with decreased HRV, predominantly as an immediate response within hours. This finding highlights that UFP may contribute to the onset of cardiovascular events through autonomic dysregulation.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enembe Okokon
- Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Qi Zhao
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany; Partner-Site Munich, German Research Center for Cardiovascular Research (DZHK), Munich, Germany
| |
Collapse
|
6
|
Niu W, Wang W, Huang C, Zhang Z, Ma L, Li R, Cherrie J, Miller MR, Loh M, Chen J, Lin C, Wu S, Guo X, Deng F. Cardiopulmonary benefits of respirator intervention against near road ambient particulate matters in healthy young adults: A randomized, blinded, crossover, multi-city study. CHEMOSPHERE 2022; 308:136437. [PMID: 36126736 DOI: 10.1016/j.chemosphere.2022.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Wearing a respirator is generally the most convenient individual intervention against ambient particulate matter (PM), and therefore there has been considerable research into its effectiveness. However, the effects of respirator intervention under different PM concentration settings have been insufficiently elucidated. We conducted a randomized, blinded, crossover intervention study in four representative cities in China in which 128 healthy university students spent 2-h walking along a busy road wearing either a real or a sham respirator and then spent the next 5-h indoors away from traffic pollution. Lung function, blood pressure, and heart rate variability were continuously measured throughout the visit. Linear mixed-effect models were fitted to evaluate the protective effects of respirator intervention on the cardiopulmonary indicators. Results showed that the beneficial effects of respirator intervention were only occasionally significant at specific time points or in specific cities or in selected parameters. Overall, respirator intervention was associated with reduced SBP (6.2 vs. 11.5 mmHg compared to baseline, p < 0.05) and increased LF (44 vs. 35 ms2 compared to baseline, p < 0.05) over the 2-h walk, but no significant effects were found over the 7-h period. Respirators have significant effect modifications on the associations between PM2.5/PM10 and the cardiopulmonary indicators, but the directions of effects were inconsistent. The intercity difference in the effects of respirator intervention was found significant, with Taiyuan and Shanghai to be the two cities with lower personal PM concentrations but more pronounced benefits. In conclusion, reducing personal exposure to PM can have some beneficial effects in some scenarios. However, respirators may not provide sufficient protection from air pollution overall, and we should avoid over-reliance on respirators and accelerate efforts to reduce emissions of pollutants in the first place. Despite standardized procedures, we found inconsistency in results across cities, consistent with the previous literature.
Collapse
Affiliation(s)
- Wei Niu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Shanxi, 030001, China
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University, Shaanxi, 710061, China; Heriot Watt University, Riccarton, Edinburgh, EH14 4AS, UK; Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh, EH14 4AP, UK
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - John Cherrie
- Heriot Watt University, Riccarton, Edinburgh, EH14 4AS, UK
| | - Mark R Miller
- University/BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, 47 Little France Crescent Edinburgh, EH16 4TJ, UK
| | - Miranda Loh
- Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh, EH14 4AP, UK
| | - Jiahui Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Chun Lin
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, NINE, 9 Little France Road, Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Shaowei Wu
- School of Public Health, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Stockfelt L, Xu Y, Gudmundsson A, Rissler J, Isaxon C, Brunskog J, Pagels J, Nilsson PT, Berglund M, Barregard L, Bohgard M, Albin M, Hagerman I, Wierzbicka A. A controlled chamber study of effects of exposure to diesel exhaust particles and noise on heart rate variability and endothelial function. Inhal Toxicol 2022; 34:159-170. [PMID: 35475948 DOI: 10.1080/08958378.2022.2065388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adverse cardiovascular effects are associated with both diesel exhaust and road traffic noise, but these exposures are hard to disentangle epidemiologically. We used an experimental setup to evaluate the impact of diesel exhaust particles and traffic noise, alone and combined, on intermediary outcomes related to the autonomic nervous system and increased cardiovascular risk. METHODS In a controlled chamber 18 healthy adults were exposed to four scenarios in a randomized cross-over fashion. Each exposure scenario consisted of either filtered (clean) air or diesel engine exhaust (particle mass concentrations around 300 µg/m3), and either low (46 dB(A)) or high (75 dB(A)) levels of traffic noise for 3 h at rest. ECG was recorded for 10-min periods before and during each exposure type, and frequency-domain heart rate variability (HRV) computed. Endothelial dysfunction and arterial stiffness were assessed after each exposure using EndoPAT 2000. RESULTS Compared to control exposure, HRV in the high frequency band decreased during exposure to diesel exhaust, both alone and combined with noise, but not during noise exposure only. These differences were more pronounced in women. We observed no synergistic effects of combined exposure, and no significant differences between exposure scenarios for other HRV indices, endothelial function or arterial stiffness. CONCLUSION Three-hour exposure to diesel exhaust, but not noise, was associated with decreased HRV in the high frequency band. This indicates activation of irritant receptor-mediated autonomic reflexes, a possible mechanism for the cardiovascular risks of diesel exposure. There was no effect on endothelial dysfunction or arterial stiffness after exposure.
Collapse
Affiliation(s)
- Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yiyi Xu
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden.,Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Jonas Brunskog
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Patrik T Nilsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Margareta Berglund
- Department of Cardiology, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Lars Barregard
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Bohgard
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inger Hagerman
- Department of Cardiology, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| |
Collapse
|