1
|
Al Miad A, Saikat SP, Alam MK, Sahadat Hossain M, Bahadur NM, Ahmed S. Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: a review. NANOSCALE ADVANCES 2024; 6:d4na00517a. [PMID: 39258117 PMCID: PMC11382149 DOI: 10.1039/d4na00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Photocatalytic degradation is a highly efficient technique for eliminating organic pollutants such as antibiotics, organic dyes, toluene, nitrobenzene, cyclohexane, and refinery oil from the environment. The effects of operating conditions, concentrations of contaminants and catalysts, and their impact on the rate of deterioration are the key focuses of this review. This method utilizes light-activated semiconductor catalysts to generate reactive oxygen species that break down contaminants. Modified photocatalysts, such as metal oxides, doped metal oxides, and composite materials, enhance the effectiveness of photocatalytic degradation by improving light absorption and charge separation. Furthermore, operational conditions such as pH, temperature, and light intensity also play a crucial role in enhancing the degradation process. The results indicated that both high pollutant and catalyst concentrations improve the degradation rate up to a threshold, beyond which no significant benefits are observed. The optimal operational conditions were found to significantly enhance photocatalytic efficiency, with a marked increase in degradation rates under ideal settings. Antibiotics and organic dyes generally follow intricate degradation pathways, resulting in the breakdown of these substances into smaller, less detrimental compounds. On the other hand, hydrocarbons such as toluene and cyclohexane, along with nitrobenzene, may necessitate many stages to achieve complete mineralization. Several factors that affect the efficiency of degradation are the characteristics of the photocatalyst, pollutant concentration, light intensity, and the existence of co-catalysts. This approach offers a sustainable alternative for minimizing the amount of organic pollutants present in the environment, contributing to cleaner air and water. Photocatalytic degradation hence holds tremendous potential for remediation of the environment.
Collapse
Affiliation(s)
- Abdullah Al Miad
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Shassatha Paul Saikat
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Md Kawcher Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
2
|
Guo Y, Cao S, Cheng S, Huang X, Ren M. Electro-catalytic adsorption mechanism of acetonitrile in water using a ME-ACFs system. Heliyon 2023; 9:e22190. [PMID: 38045224 PMCID: PMC10689879 DOI: 10.1016/j.heliyon.2023.e22190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Acetonitrile wastewater is difficult to treat due to its high salinity and toxicity to microorganisms. In this paper, a micro electro-activated carbon fiber coupled system (ME-ACF) was established to treat simulated acetonitrile wastewater. In the 200 ml system, the concentration of acetonitrile adsorbed by ACF was 91.3 mg/L, while that of acetonitrile adsorbed by ME-ACF was 150.6 mg/L, and the removal efficiency was increased by 65 % in comparison. The activated carbon fibers before and after the reaction were subjected to a series of characterization, and it was found that the SABET decreased from 1393.48 m2/g to 1114.93 m2/g and 900.23 m2/g, respectively, but the oxygen on the surface of the activated carbon fibers was increased, and the effect of the micro electrolytic system on the activated carbon fibers was then analyzed. The possible reasons for the formation of acetic acid contained in the products were also discussed using DFT simulations. The removal mechanism of acetonitrile by ME-ACF was considered to be electrically enhanced adsorption and electro-catalytic hydrolysis.
Collapse
Affiliation(s)
- Yaping Guo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuo Cao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | | - Xinhua Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengyao Ren
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Tran TY, Verma S, Younis SA, Kim KH. Zinc-doped titanium oxynitride as a high-performance adsorbent for formaldehyde in air. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131203. [PMID: 36958182 DOI: 10.1016/j.jhazmat.2023.131203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The potential utility of titanium oxynitride doped with 5% zinc (ZnTON) has been investigated as an adsorbent for the treatment of gaseous formaldehyde (FA) using a fixed-bed adsorption system. The adsorption capacity of ZnTON, when estimated at 10%/100% breakthrough (BT) levels from a dry feed gas consisting of 10 Pa FA, was far superior to two reference materials (i.e., commercial P25-TiO2 and activated carbon (AC)) by factors of 1.7/1.3 and 10/2.5, respectively. The adsorption capacity of ZnTON increased with the increase in the initial feeding concentration of FA (5-12.5 Pa), while decreasing with the rising temperature (25-100 oC). An increase in moisture level (0-100% relative humidity) also led to 5.4- and 2.5-fold reductions in adsorption capacity of ZnTON at 10% and 100% BT levels, respectively. Thermodynamically, the adsorption of FA onto ZnTON is an exothermic (ΔHo = - 9.69 kJ.mol-1) to be feasible in nature based on physisorption mechanism. Further, the adsorption of FA onto ZnTON was governed by surface interactions and monolayer surface coverage (Van der Waal's force/electrostatic attraction), as it obeyed the Langmuir isotherm and pseudo-second-order kinetic models. Regeneration tests indicated a positive effect of moisture on FA desorption and durability of ZnTON (i.e., over three adsorption-desorption cycles). This study offers valuable mechanistic insights into the synthesis of an advanced adsorbent for the efficient removal of hazardous volatile organic compounds under near-ambient conditions.
Collapse
Affiliation(s)
- Thi Yen Tran
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, 04763, Republic of Korea
| | - Swati Verma
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, 04763, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, 04763, Republic of Korea.
| |
Collapse
|
4
|
Sadati H, Ayati B. Using a promising biomass-based biochar in photocatalytic degradation: highly impressive performance of RHB/SnO 2/Fe 3O 4 for elimination of AO7. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00389-2. [PMID: 36781702 DOI: 10.1007/s43630-023-00389-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
The release of industrial dyes into the environment has recently increased, resulting in harmful effects on people and ecosystems. In recent years, the use of adsorbents in photocatalytic nanocomposites has attracted significant interest due to their low cost, efficiency, and eco-friendly physical and chemical characteristics. Herein, Acid Orange 7 (AO7) removal was investigated by photocatalytic degradation using Rice Rusk Biochar (RHB), Tin (IV) Oxide (SnO2), and Iron Oxide (Fe3O4) as heterogeneous nanocomposite. After the preparation of RHB, the nanocomposite was synthesized and characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Powder Diffraction (XRD), Brunauer-Emmett-Teller (BET), and Fourier-Transform Infrared Spectroscopy (FT-IR). To optimize the elimination of AO7 by the One-Factor-At-a-Time (OFAT) method, effective parameters including mixing ratio (RHB:SnO2:Fe3O4), dye concentration, solution pH, and nanocomposite dose were studied. The results showed that the removal efficiency of AO7 after 120 min under the optimal mixing ratio of 1:1.5:0.6, dye concentration of 75 mg/l, solution pH of 4, and nanocomposite dose of 0.7 g/l was 92.37%. Moreover, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal rates were obtained at 82.22 and 72.22%, respectively. The Average Oxidation State (AOS) and Carbon Oxidation State (COS) of the AO7 solution were increased after the process, indicating biodegradability improvement. Various scavenger effects were studied under optimal conditions, and the results revealed that O2- and H+ reactive species play a crucial role in the photocatalytic degradation of AO7. The reusability and stability of nanocomposite were tested in several consecutive experiments, and the degradation efficiency was reduced from 92 to 79% after five consecutive cycles. It is expected that this research contributes significantly to the utilization of agricultural waste in photocatalytic nanocomposites for the degradation of environmental pollutants.
Collapse
Affiliation(s)
- Hamid Sadati
- Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran
| | - Bita Ayati
- Department of Environmental Engineering, Civil and Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran.
| |
Collapse
|
5
|
Sun E, Wei H, Zhang S, Bi Y, Huang Z, Ji G, Liu F, Zhao C. Adsorption coupling photocatalytic removal of gaseous n-hexane by phosphorus-doped g-C 3N 4/TiO 2/Zn(OAc) 2-ACF composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2164-2178. [PMID: 35931846 DOI: 10.1007/s11356-022-22382-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
VOCs emission reduction in the petroleum and petrochemical industry is a hot and difficult topic at present. The single method may not be able to meet the actual treatment status. Therefore, the adsorption coupled photocatalytic degradation technology was used to remove VOCs. Phosphorus-doped carbon nitride (PCN) and PCN/TiO2 were prepared by hydrothermal synthesis and sol-gel method, and then PCN/TiO2/Zn(OAc)2-ACF composites were prepared by ultrasonic impregnation on zinc acetate modified activated carbon fibers (Zn(OAc)2-ACF). The removal efficiency of n-hexane by composite materials was explored in a self-made reactor, and the factors affecting removal efficiency, removal mechanism, and possible ways of degradation were investigated. The results showed that under the optimum reaction conditions (initial concentration of n-hexane 200 mg/m3, space velocity 1000 h-1, light intensity 24 W, mass fraction of doped PCN 6%, loading twice, calcination temperature 450 °C), PCN/TiO2/Zn(OAc)2-ACF composite has the highest removal efficiency of n-hexane (90.2%). The adsorption capacity of the composites after doping the P element was 215.3 mg/g, which did not enhance the adsorption performance compared with that before doping, but the removal rate of n-hexane was higher. This showed that doping P element was helpful to enhance the photocatalytic activity of the composites.
Collapse
Affiliation(s)
- EnCheng Sun
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
- Technology Inspection Center of ShengLi Oil Field, Dongying, 257000, People's Republic of China
| | - HaiDi Wei
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Shuai Zhang
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Yuxi Bi
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Ziyan Huang
- Hubei University, Wuhan, 430062, People's Republic of China
| | - Guoyang Ji
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| | - Fang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China.
| | - Chaocheng Zhao
- College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, People's Republic of China
| |
Collapse
|
6
|
A Simple Preparation Method of Graphene and TiO2 Loaded Activated Carbon Fiber and Its Application for Indoor Formaldehyde Degradation. SEPARATIONS 2022. [DOI: 10.3390/separations9020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Formaldehyde has a significant impact on human health. This study used a simple dipping method to load graphene-titanium dioxide (GR-TiO2) on activated carbon fibers (ACFs). The microstructure of GR-TiO2/ACF hybrid material was observed by SEM, combined with XRD and BET analysis. The result showed that the GR-TiO2/ACF hybrid material had a specific surface area of 893.08 m2/g and average pore size of 2.35 nm. The formaldehyde degradation efficiency of the prepared material was tested under different conditions, such as ultraviolet (UV) radiation, air supply volume, relative humidity, initial mass concentration. The results showed that the UV radiation intensity, airflow and the initial mass concentration were positively correlated with the formaldehyde removal rate, and the relative humidity was negatively correlated with the formaldehyde removal rate. The GR-TiO2/ACF hybrid material had a maximum formaldehyde removal rate of 85.54% within 120 min.
Collapse
|