1
|
Chen D, Zhao J, Xu S, Wu L. Detection of Short-Chain Chlorinated Aliphatic Hydrocarbons through an Engineered Biosensor with Tailored Ligand Specificity. Anal Chem 2024; 96:15614-15623. [PMID: 39292503 DOI: 10.1021/acs.analchem.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Short-chain chlorinated aliphatic hydrocarbons (SCAHs), commonly used as industrial reagents and solvents, pose a significant threat to ecosystems and human health as they infiltrate aquatic environments due to extensive usage and accidental spills. Whole-cell biosensors have emerged as cost-effective, rapid, and real-time analytical tools for environmental monitoring and remediation. While the broad ligand specificity of transcriptional factors (TFs) often prohibits the application of such biosensors. Herein, we exploited a semirational transition ligand approach in conjunction with a positive/negative fluorescence-activated cell sorting (FACS) strategy to develop a biosensor based on the TF AlkS, which is highly specific for SCAHs. Furthermore, through promoter-directed evolution, the performance of the biosensor was further enhanced. Mutation in the -10 region of constitutive promoter PalkS resulted in reduced AlkS leakage expression, while mutation in the -10 region of inducible promoter PalkB increased its accessibility to the AlkS-SCAHs complex. This led to an 89% reduction in background fluorescence leakage of the optimized biosensor, M2-463, further enhancing its response to SCAHs. The optimized biosensor was highly sensitive and exhibited a broader dynamic response range with a 150-fold increase in fluorescence output after 1 h of induction. The detection limit (LOD) reached 0.03 ppm, and the average recovery rate of SCAHs in actual water samples ranged from 95.87 to 101.20%. The accuracy and precision of the proposed biosensor were validated using gas chromatography-mass spectrometry (GC-MS), demonstrating the promising application for SCAH detection in an actual environment sample.
Collapse
Affiliation(s)
- Dongdong Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiadi Zhao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
2
|
Qi A, Wang P, Lv J, Zhao T, Huang Q, Wang Y, Zhang X, Wang M, Xiao Y, Yang L, Ji Y, Wang W. Distributions of PAHs, NPAHs, OPAHs, BrPAHs, and ClPAHs in air, bulk deposition, soil, and water in the Shandong Peninsula, China: Urban-rural gradient, interface exchange, and long-range transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115494. [PMID: 37742577 DOI: 10.1016/j.ecoenv.2023.115494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
A systematic study of the movement of PAHs (Polycyclic aromatic hydrocarbons) and their derivatives through air, soil, and water is key to understanding the exchange and transport mechanisms of these pollutants in the environment and for ultimately improving environmental quality. PAHs and their derivatives, such as nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), brominated PAHs (BrPAHs) and chlorinated PAHs (ClPAHs), were analyzed in air, bulk deposition, soil, and water samples collected from urban, rural, field, and background sites on the eastern coast of China. The goal was to investigate and discuss their spatiotemporal variations, exchange fluxes, and transport potential. The concentrations of PAHs and their derivatives in the air and bulk deposition displayed distinct seasonal patterns, with higher concentrations observed during the winter and spring and lower concentrations during the summer and autumn. NPAHs exhibited the opposite trend. Significant urban-rural gradients were observed for most of the PAHs and their derivatives. According to the air-soil fugacity calculations, 2-3 ring PAHs, BrPAHs, and ClPAHs were found to volatilize from the soil into the air, while 4-7 ring PAHs, OPAHs, and NPAHs deposited from the air into the soil. The air-water fugacity of the PAHs and their derivatives indicated that surface water was an important source for the ambient atmosphere in Qingdao. The characteristic travel distances (CTDs) and persistence (Pov) for atmospheric transport were much lower than that for the water samples, which may be due to the longer half-lives of PAHs and their derivatives in water. NPAHs and ClPAHs with long transport distances and strong persistence in water could lead to a significant impact on marine pollution.
Collapse
Affiliation(s)
- Anan Qi
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Pengcheng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianhua Lv
- Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Tong Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China; Qingdao Research Academy of Environmental Sciences, Qingdao 266003, China
| | - Qi Huang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yiming Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xiongfei Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Miao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yang Xiao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingxiao Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China; Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu, 210023, China.
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Rodríguez-Bolaña C, Pérez-Parada A, Tesitore G, Goyenola G, Kröger A, Pacheco M, Gérez N, Berton A, Zinola G, Gil G, Mangarelli A, Pequeño F, Besil N, Niell S, Heinzen H, Teixeira de Mello F. Multicompartmental monitoring of legacy and currently used pesticides in a subtropical lake used as a drinking water source (Laguna del Cisne, Uruguay). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162310. [PMID: 36828068 DOI: 10.1016/j.scitotenv.2023.162310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A pilot annual monitoring survey (April 2018-March 2019) was conducted to investigate the presence of pesticides in superficial water and fish in Laguna del Cisne, one of the most critical drinking water sources in Uruguay. A total of 25 pesticide residues were detected in superficial water (89.3 % of the samples). Pesticide's temporal distribution was associated with crops and livestock practices, with higher occurrences in spring and summer than in autumn and winter. The most frequent compounds in superficial water were the insecticide chlorantraniliprole, and the herbicides glyphosate (including its metabolite AMPA) and metolachlor. The levels of Organochlorine pesticide, p,p'-DDT, was in some cases two order of magnitude above the international water quality guidelines for Ambient Water Criteria. In fishes, eight different pesticides were detected, at concentrations from 1000 to 453,000 ng·kg-1. The most frequent pesticides found were propiconazole, chlorpyrifos, and p,p'-DDE. The widespread occurrence of pesticides in fish suggests potential exposure effects on fish populations and the aquatic ecosystem. The sampling approach of this work allowed monitoring the continuous concentrations of several pesticides in surface waters and fishes to establish the influence from past and current agriculture practices in Laguna del Cisne basin. For safety measures, continuous monitoring programs must be performed in this system to prevent toxicity impacts on aquatic organisms and human health.
Collapse
Affiliation(s)
- César Rodríguez-Bolaña
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, CP 27000 Rocha, Uruguay; Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Giancarlo Tesitore
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Guillermo Goyenola
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Alejandra Kröger
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Martín Pacheco
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay
| | - Natalia Gérez
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Analia Berton
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Gianna Zinola
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Guillermo Gil
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Alejandro Mangarelli
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Fiamma Pequeño
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Natalia Besil
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Silvina Niell
- Grupo de Análisis de Compuestos Traza, Departamento de Química del Litoral, Facultad de Química, CENUR Litoral Norte, Universidad de la República, Ruta 3, Km 363, 60000 Paysandú, Uruguay
| | - Horacio Heinzen
- Grupo de Análisis de Compuestos Traza, Cátedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Franco Teixeira de Mello
- Departamento de Ecologia y Gestion Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Tacuarembó entre Saravia y Bvar. Artigas, Maldonado CP 20000, Uruguay.
| |
Collapse
|
4
|
Lu Y, Shen Q, Zhai C, Yan H, Shen S. Ant nest-like hierarchical porous imprinted resin-dispersive solid-phase extraction for selective extraction and determination of polychlorinated biphenyls in milk. Food Chem 2023; 406:135076. [PMID: 36455312 DOI: 10.1016/j.foodchem.2022.135076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent toxic, organic chemicals that tend to accumulate in the food chain. This study reports the rapid and selective extraction and determination of PCBs (PCB81, 153, 105, 126, and 157) in milk samples by a dispersive solid-phase extraction (DSPE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). An ionic liquid-molecularly imprinted porous resin (IL-MIPPR) as a DSPE adsorbent was synthesized from m-aminophenol, formaldehyde, and 2,2'-benzidinedisulfonic acid as the monomer, crosslinker, and virtual template, respectively. The IL-MIPPR had a fast mass transfer (1.0 min) and good selectivity (imprinting factors of 1.8-3.0). The IL-MIPPR - DSPE - GC-MS/MS method exhibited good linearity (R2 ≥ 0.9995), the limit of detections (LODs) < 0.6 pg/g, and the recoveries ranged from 82.8 % to 106 % with relative standard deviations ≤ 6.6 %. This method is thus better than previously reported methods in terms of the LOD, the adsorbent dosage, and the extraction time.
Collapse
Affiliation(s)
- Yanke Lu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Qi Shen
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Chengcheng Zhai
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|