1
|
Gu Y, Wang H, Yang Y, Chen H, Chen C, Cheng W. Metabonomics reveals the mechanism of stress resistance in Vetiveria zizanioides inoculated with AMF under copper stress. Sci Rep 2025; 15:6005. [PMID: 39966475 PMCID: PMC11836362 DOI: 10.1038/s41598-025-90595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Vetiveria zizanioides, renowned for its robust stability and exceptional capacity to sequester heavy metals, has garnered widespread application in tailings ecological restoration efforts. Arbuscular mycorrhizal fungi (AMF), which are capable of forming symbiotic relationships with more than 80% of terrestrial plant roots, play a pivotal role in enhancing plant nutrient uptake and bolstering resilience. In this study, we conducted a comprehensive investigation into the physiological and biochemical responses of Vetiveria zizanioides subjected to varying levels of copper stress (with copper concentrations ranging from 0 mg/kg to 400 mg/kg), with or without AMF inoculation. Additionally, we performed nontargeted metabonomic analyses to gain deeper insights into the metabolic changes that occur in vetiver grass under AMF inoculation and copper stress. Our findings revealed that Vetiveria zizanioides inoculated with AMF consistently demonstrated superior growth performance across all copper stress levels compared with noninoculated counterparts. Using nontargeted metabonomic analyses, inoculation with AMF affects the metabolism of phenylalanine and related pathways in vetiver as well as contributing to the promotion of the formation of phytochelatins (PCs) from glutamate, thereby alleviating copper stress. The results highlight the potential of AMF-inoculated Vetiveria zizanioides as a promising bioremediation tool capable of effectively mitigating the adverse effects of heavy metal pollution.
Collapse
Affiliation(s)
- Yang Gu
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Huaqiu Wang
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yuanyuan Yang
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Hualiang Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Chao Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Cheng
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Da YM, Li SS, Li YQ, Deng LY, Li MJ, Huang T, Sun QY, Shirin J, Zhou GW. Effects of cadmium on the intestinal health of the snail Bradybaena ravida Benson. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:849-858. [PMID: 39001972 DOI: 10.1007/s10646-024-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg-1). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.
Collapse
Affiliation(s)
- Yan-Mei Da
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Shun-Shun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Yan-Qi Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Le-Yu Deng
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Qing-Ye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Jazbia Shirin
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
3
|
Deng S, Zhang X, Zhu Y, Zhuo R. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 2024; 72:108337. [PMID: 38460740 DOI: 10.1016/j.biotechadv.2024.108337] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The global industrialization and modernization have witnessed a rapid progress made in agricultural production, along with the issue of soil heavy metal (HM) pollution, which has posed severe threats to soil quality, crop yield, and human health. Phytoremediation, as an alternative to physical and chemical methods, offers a more cost-effective, eco-friendly, and aesthetically appealing means for in-situ remediation. Despite its advantages, traditional phytoremediation faces challenges, including variable soil physicochemical properties, the bioavailability of HMs, and the slow growth and limited biomass of plants used for remediation. This study presents a critical overview of the predominant plant-based HM remediation strategies. It expounds upon the mechanisms of plant absorption, translocation, accumulation, and detoxification of HMs. Moreover, the advancements and practical applications of phyto-combined remediation strategies, such as the addition of exogenous substances, genetic modification of plants, enhancement by rhizosphere microorganisms, and intensification of agricultural technologies, are synthesized. In addition, this paper also emphasizes the economic and practical feasibility of some strategies, proposing solutions to extant challenges in traditional phytoremediation. It advocates for the development of cost-effective, minimally polluting, and biocompatible exogenous substances, along with the careful selection and application of hyperaccumulating plants. We further delineate specific future research avenues, such as refining genetic engineering techniques to avoid adverse impacts on plant growth and the ecosystem, and tailoring phyto-combined strategies to diverse soil types and HM pollutants. These proposed directions aim to enhance the practical application of phytoremediation and its integration into a broader remediation framework, thereby addressing the urgent need for sustainable soil decontamination and protection of ecological and human health.
Collapse
Affiliation(s)
- Shaoxiong Deng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, PR China; Hunan Provincial Certified Enterprise Technology Center, Hunan Xiangjiao Liquor Industry Co., Ltd., Shaoyang 422000, PR China.
| |
Collapse
|
4
|
Chen Y, Liu G, Ali MR, Zhang M, Zhou G, Sun Q, Li M, Shirin J. Regulation of gut bacteria in silkworm (Bombyx mori) after exposure to endogenous cadmium-polluted mulberry leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114853. [PMID: 37023650 DOI: 10.1016/j.ecoenv.2023.114853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soil cadmium (Cd) pollution presents a severe pollution burden to flora and fauna due to its non-degradability and transferability. The Cd in the soil is stressing the silkworm (Bombyx mori) out through a soil-mulberry-silkworm system. The gut microbiota of B.mori are reported to shape host health. However, earlier research had not reported the effect of endogenous Cd-polluted mulberry leaves on the gut microbiota of B.mori. In the current research, we compared the phyllosphere bacteria of endogenous Cd-polluted mulberry leaves at different concentrations. The investigation of the gut bacteria of B.mori fed with the mulberry leaves was done to evaluate the impact of endogenous Cd- polluted mulberry leaves on the gut bacteria of the silkworm. The results revealed a dramatic change in the gut bacteria of B.mori whereas, the changes in the phyllosphere bacteria of mulberry leaves in response to an increased Cd concentration were insignificant. It also increased the α-diversity and altered the gut bacterial community structure of B. mori. A significant change in the abundance of dominant phyla of gut bacteria of B.mori was recorded. At the genus level, the abundance of Enterococcus, Brachybacterium and Brevibacterium group related to disease resistance, and the abundance of Sphingomonas, Glutamicibacter and Thermus related to metal detoxification was significantly increased after Cd exposure. Meanwhile, there was a significant decrease in the abundance of the pathogenic bacteria Serratia and Enterobacter. The results demonstrated that endogenous Cd-polluted mulberry leaves caused perturbations in the gut bacterial composition of B.mori, which may driven by Cd content rather than phyllosphere bacteria. A significant variation in the specific bacterial community indicated the adaptation of B. mori gut for its role in heavy metal detoxification and immune function regulation. The results of this study help to understand the bacterial community associated with endogenous Cd-polluted resistance in the gut of B.mori, which proves to be a novel addition in describing its response in activating the detoxification mechanism and promoting its growth and development. This research work will help to explore the other mechanisms and microbiota associated with the adaptations to mitigate the Cd pollution problems.
Collapse
Affiliation(s)
- Yongjing Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Guijia Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Maria Rafraf Ali
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Mingzhu Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Guowei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China.
| | - Mingjun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| | - Jazbia Shirin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui Province, China; Anhui Province Engineering Laboratory for Mine Ecological Remediation, Hefei, China; Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
| |
Collapse
|
5
|
Liu B, WeiXie L, Deng R, Lei N, Pu S, Li J. Effects of different fertilization methods on Lolium multiflorum Lam. growth and bacterial community in waste slag. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60538-60551. [PMID: 37036646 DOI: 10.1007/s11356-023-26386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023]
Abstract
Waste slag has low nutrient content, so it has insufficient nutrient cycling and transformation in the soil ecosystem. There are few studies on the application of oligotrophic phosphate-solubilizing bacteria and phosphate (P) fertilizer to improve the properties of waste slags. In this study, three oligotrophic bacterial strains with P solubilizing activity, namely, Bacillus subtilis 2C (7.23 μg/mL), Bacillus subtilis 6C (4.07 μg/mL), and Bacillus safensis 2N (5.05 μg/mL), were isolated from waste slags. In the pot experiment, compared with no application of P fertilizer, inoculation of Bacillus subtilis 2C with a 50% recommended dose of P fertilizer significantly increased the available phosphorus (AP), total phosphorus (TP), and total nitrogen (TN) in slag by 33.16%, 76.70%, and 233.33%, respectively. The N, P uptake and fresh weight of Lolium multiflorum Lam. were significantly improved by 114.15%, 139.02%, and 100%, respectively. The analysis of the bacterial community showed that the application of P fertilizer decreased the diversity and richness of the bacterial community, and with the addition of phosphorus fertilizer and Bacillus subtilis 2C, the bacterial community in the slag developed towards eutrophication. Redundancy analysis (RDA) showed that the TP content in the slag was significantly correlated with the bacterial community (P = 0.001, < 0.01), followed by the TN content. This study on different P fertilizer application methods can provide some basic ideas for improving the performance of waste slag.
Collapse
Affiliation(s)
- Boyu Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - LuYao WeiXie
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Ran Deng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Shengyan Pu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Jing Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| |
Collapse
|