1
|
Duan H, Wang Y, Shen H, Ren C, Li J, Li J, Wang Y, Su Y. Source-specific probabilistic health risk assessment of dust PAHs in urban parks based on positive matrix factorization and Monte Carlo simulation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:451. [PMID: 39316207 DOI: 10.1007/s10653-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Understanding the health risks of polycyclic aromatic hydrocarbons (PAHs) in dust from city parks and prioritizing sources for control are essential for public health and pollution management. The combination of Source-specific and Monte Carlo not only reduces management costs, but also improves the accuracy of assessments. To evaluate the sources of PAHs in urban park dust and the possible health risks caused by different sources, dust samples from 13 popular parks in Kaifeng City were analyzed for PAHs using gas chromatograph-mass spectrometer (GC-MS). The results showed that the surface dust PAH content in the study area ranged from 332.34 µg·kg-1 to 7823.03 µg·kg-1, with a mean value of 1756.59 µg·kg-1. Nemerow Composite Pollution Index in the study area ranged from 0.32 to 14.41, with a mean of 2.24, indicating that the overall pollution warrants attention. Four pollution sources were identified using the positive matrix factorization (PMF) model: transportation source, transportation-coal and biomass combustion source, coke oven emission source, and petroleum source, with contributions of 33.74%, 25.59%, 22.14%, and 18.54%, respectively. The Monte Carlo cancer risk simulation results indicated that park dust PAHs pose a potential cancer risk to all three populations (children, adult male and adult female). Additionally, the cancer risk for children was generally higher than that for adult males and females, with transportation sources being the main contributor to the carcinogenic risk. Lastly, sensitivity analyses results showed that the toxic equivalent concentration (CS) is the parameter contributing the most to carcinogenic risk, followed by Exposure duration (ED).
Collapse
Affiliation(s)
- Haijing Duan
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanfeng Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Haoxin Shen
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Chong Ren
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jing Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jiaheng Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanxia Su
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China.
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Gong H, Hu J, Rui X, Luo J, Zhu N. Unveiling the occurrence, distribution, removal, and environmental impacts of 65 emerging contaminants in neglected fresh leachate from municipal solid waste incineration plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132355. [PMID: 37651937 DOI: 10.1016/j.jhazmat.2023.132355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Emerging contaminants (ECs) are commonly found in environmental media. Yet leachate from municipal solid waste incineration plants (MSWIPs), which can serve as a reservoir for various contaminants, including ECs, has received little investigation. To address this gap, 65 ECs were analyzed in the fresh leachate and biological effluent from three major MSWIPs in Shanghai. Results indicated that over half (56%) of the 65 ECs were detected in fresh leachate. Different ECs would be removed to varying degrees after biological treatment, including polycyclic aromatic hydrocarbons (PAHs) (65%), polybrominated diphenyl ethers (PBDEs) (51%), phthalate esters (PAEs) (36%), and organophosphorus pesticides (OPPs) (34%). Notably, for tetrabromobisphenol A (TBBPA), a PBDE substitute, only 2% was removed after biological treatment, while polychlorinated biphenyls (PCBs) were effectively removed at 83%. Water solubility and the octanol-water partition coefficient are key factors influencing the distribution and removal of ECs in leachate. the effluent will still contain refractory ECs even after the biological treatment. These residual ECs discharged to sewers can impact wastewater treatment plants or contaminate surface water and groundwater. These findings provide insights into the leachate contamination by ECs, their environmental fate, factors affecting their behavior, and potential environmental impacts.
Collapse
Affiliation(s)
- Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan Rui
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Zhang P, Guo C, Wei Y, Wang Z, Li Z, Qian Y, Li X, Zhu X, Xu P, Shen J, Xue W, Hu J. Ambient black carbon variations and emission characteristics of typical Chinese vessels in the Yangtze River Delta, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102739-102749. [PMID: 37672157 DOI: 10.1007/s11356-023-29667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
Black carbon (BC) has a significant impact on air quality, climate change, and human health. Studies on BC from vessel exhaust have been focused on in recent years. To realize the contribution of BC from vessels to ambient air quality, 28 months of BC variation were observed from February 2019 to May 2022, including 3 fishing moratoriums and 2 normal periods. The results showed that the average daily concentration of BC in the fishing moratorium was significantly lower than that in the normal period. The difference proportion of the BC concentration between 370 and 880 nm was calculated over the whole period. As a result, the mean difference value in the fishing moratorium from February to May was 0.06 ± 0.07, and the normal period was -0.02 ± 0.05. The aethalometer model indicated that BC was greatly affected by fossil fuel combustion in the normal period. The effect of vessel emissions on regional BC concentrations was considerable. In addition, 16 PAHs and 21 elements in PM emitted from 24 vessels of different types were sampled and analyzed in Dianshan Lake and the Taipu River. EC accounted for the highest proportion (23.64%) in the sample of small trawlers compared to the emissions from cargo ships with large tonnages. The component profiles of vessel exhaust showed that Zn, As, phenanthrene (Phe), anthracene (Ant), fluoranthene (Fla), and pyrene (Pyr) were the dominant species, although some of these species were mainly recognized as characteristic factors of coal combustion. To improve the accuracy of identifying the vessel source, the diagnostic ratios of Ant/(Ant + Phe), BaA/(BaA + Chr), Phe/Ant, and BaA/Chr were provided, and they exhibited the obvious characteristics of fuel combustion.
Collapse
Affiliation(s)
- Puzhen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ping Xu
- Qingpu District Environmental Monitoring Station of Shanghai, Shanghai, China
| | - Jun Shen
- Qingpu District Environmental Monitoring Station of Shanghai, Shanghai, China
| | - Wenchao Xue
- Qingpu District Environmental Monitoring Station of Shanghai, Shanghai, China
| | - Jun Hu
- Qingpu District Environmental Monitoring Station of Shanghai, Shanghai, China
| |
Collapse
|
4
|
Li YJ, Shi YT, Zhao LZ, Li YF, Wang JP, Li JK. Study of polycyclic aromatic hydrocarbons accumulation in bioretention facilities and its influence on microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100165-100187. [PMID: 37632615 DOI: 10.1007/s11356-023-29365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
Bioretention facilities are one of the most widely used measures for urban stormwater control and utilization. In this study, the accumulation characteristics of polycyclic aromatic hydrocarbons (PAHs) in bioretention facilities and the effects of PAHs on the structure of microbial communities were explored by combining on-site monitoring and water distribution simulation experiments. The correlation between pollutant accumulation and dominant microorganisms in the bioretention systems was also clarified. The results showed that all 16 priority PAHs were detected in the bioretention facilities in the sponge city pilot area. The PAH concentrations in the soil during the non-rainy season were higher than those in the rainy season and medium- and high-ring PAHs dominated. PAHs in the study area were mainly derived from coal and biomass combustion. The potential carcinogenic risk of PAHs accumulated in the bioretention facilities in the study area was low. The microbial diversity during the non-rainy season was greater than that during the rainy season. Firmicutes, Bacteroidetes, Bacteroides, and Massilia were strongly correlated with naphthalene (NAP), pyrene (PYR), fluoranthene (FLT), and benzo[a]pyrene (BaP). According to the results of the small-scale water distribution test, the addition of PAHs had little effect on the decline in water quantity, and there was no significant regularity in the reduction of water quality including TP, NH4+-N, NO3-N, and TN. The addition of PAHs had a significant effect on the microbial community structure and an inhibitory effect on enzyme activity.
Collapse
Affiliation(s)
- Ya-Jiao Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yan-Ting Shi
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Ling-Zhi Zhao
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Ya-Fang Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Jia-Ping Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jia-Ke Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| |
Collapse
|
5
|
Wang XT, Wang CL, Zhou Y, Ren GF, Fu R, An J. Short- and medium-chain chlorinated paraffins in urban road dust of Shanghai, China: concentrations, source apportionment and human exposure assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3789-3804. [PMID: 36580188 DOI: 10.1007/s10653-022-01453-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/11/2022] [Indexed: 06/01/2023]
Abstract
Chlorinated paraffins (CPs) are ubiquitous anthropogenic contaminants that have been found in various environmental media. The objective of this study was to determine concentrations, spatial distribution, possible sources and potential health risk of SCCPs and MCCPs in urban road dust collected from Shanghai, China. The concentrations ranged from 9.74 to 11,400 ng g-1 for ΣSCCPs, 44.1 to 49,900 ng g-1 for ΣMCCPs and 53.9 to 61,400 ng g-1 for total CPs, respectively. MCCPs were the dominant component in all road dust, averagely accounting for 82.8% of total CPs. The concentrations of CPs in dust collected from traffic and commercial areas were significantly higher than those from campus, industrial, park and residential areas (p < 0.01), which could be attributed to tire wear in heavy traffic. All dust samples were divided into two groups by hierarchical cluster analysis for both SCCPs and MCCPs, and the most abundant homologue groups in most samples were C10Cl7-10 and C13Cl7-9 for SCCPs, and C14Cl7-9 and C15Cl8-9 for MCCPs. Correlation analysis showed that all carbon homologues in road dusts were highly correlated each other, suggesting SCCPs and MCCPs in dust maybe came from similar sources. Three sources for CPs in dust samples were apportioned by the PMF model; their relative contributions to the total CPs burden in dust were 25.6% for factor 1 (commercial CP mixture), 13.7% for factor 2 (long-distance transport) and 60.7% for factor 3 (commercial CP mixture). The median estimated daily intakes of total CPs via road dust were 1.78 × 10-5 for children and 3.0 × 10-6 mg kg-1 day-1 for adults, respectively. Quantitative risk assessment using non-cancer hazard index and total margin of exposure of total CPs indicated that total CPs at the present level in road dust pose no significant risk for both children and adults in Shanghai.
Collapse
Affiliation(s)
- Xue-Tong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng-Lin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, 200040, China
| | - Guo-Fa Ren
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rui Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Moskovchenko DV, Pozhitkov RY, Minkina TM, Sushkova SN. Trace Metals and Polycyclic Aromatic Hydrocarbons in the Snow Cover of the City of Nizhnevartovsk (Western Siberia, Russia). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:101-118. [PMID: 36580131 DOI: 10.1007/s00244-022-00974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The city of Nizhnevartovsk is one of the centers of oil production in Western Siberia (Russia). A survey of the contents of trace metals and metalloids (TMMs) and polycyclic aromatic hydrocarbons (PAHs) in the snow cover was conducted there. It was aimed to study insoluble particles in the snow where the predominant fraction of pollutants in urban areas is concentrated. In contrast to the background area, the deposition of TMMs in Nizhnevartovsk increases by 1-2 orders of magnitude. The deposition of V and Mn increases by 37 and 88 times, respectively, and the deposition of W increases at most (by 98 times). Abrasion of spikes of winter tires, abrasion of metal parts of vehicles, and combustion of motor fuels cause the pollution with W, Co, and V, respectively. The total content of 12 EPA PAHs in the particulate fraction of snow in the urban area averaged 148.2 ng l-1, and the deposition rate was 17.0 μg/m2. In contrast to the background area, the fraction of high molecular weight 5-6-ring PAHs significantly increases in the city, especially dibenzo(a,h)anthracene (DahA). The indicative ratios of PAHs showed that the snowpack composition was influenced by both petrogenic and pyrogenic sources. The proportion of pyrogenic sources is the highest in the low-rise residential area due to fuel combustion to produce heat and burning of household waste. The impact of motor transport is also major and is manifested in the maximum pollution in areas of heavy traffic. No emissions of PAHs from oil spills from the nearby Samotlor oil field have been identified. It is concluded that the hydrocarbon pollution of the atmosphere from the field weakens during the winter period compared to the warm season. Application of the integral TDF index characterizes the majority (72%) of the studied samples as lowly polluted, 24% of the observation sites are classified as moderately polluted, and one (4%), as highly polluted. The maximum TDF values are observed in the industrial area. The data obtained during the study allowed us to identify the central areas and sites along the roads with the heaviest traffic as the most contaminated areas of the city. This study can be a reference for air pollution monitoring in Nizhnevartovsk.
Collapse
Affiliation(s)
- D V Moskovchenko
- Tyumen State University, Volodarskogo St., Tyumen, Russia, 625003.
- Tyumen Scientific Centre, Malygina St., Tyumen, Russia, 625026.
| | - R Y Pozhitkov
- Tyumen Scientific Centre, Malygina St., Tyumen, Russia, 625026
| | - T M Minkina
- Southern Federal University, Rostov-On-Don, Russia
| | - S N Sushkova
- Southern Federal University, Rostov-On-Don, Russia
| |
Collapse
|
7
|
Chen Y, Lai B, Wei Y, Ma Q, Liang H, Yang H, Ye R, Zeng M, Wang H, Wu Y, Liu X, Guo L, Tang H. Polluting characteristics, sources, cancer risk, and cellular toxicity of PAHs bound in atmospheric particulates sampled from an economic transformation demonstration area of Dongguan in the Pearl River Delta, China. ENVIRONMENTAL RESEARCH 2022; 215:114383. [PMID: 36150442 DOI: 10.1016/j.envres.2022.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The Songshan Lake Science and Technology Industrial Park is a national economic transition demonstration area, which centers at a traditional industrial region, in Dongguan, China. We were interested in the involved atmospheric particulates-bound PAHs regarding their sources, cancer risk, and related cellular toxicity for those in other areas under comparable conditions. In this study, the daily concentrations of TSP, PM10, and PM2.5 were averaged 127.95, 95.91, and 67.62 μg/m3, and the bound PAHs were averaged 1.31, 1.22, and 0.77 ng/m3 in summer and 12.72, 20.51 and 40.27 ng/m3 in winter, respectively. The dominant PAHs were those with 5-6 rings, and 4-6 rings in summer and winter, respectively. The incremental lifetime cancer risk (ILCR) (90th percentile probability) of total PAHs was above 1.00E-06 in each age group, particularly high in adolescents. Sensitivity analysis indicated that slope factor and body weight had greater impact than exposure duration and inhalation rate on the ILCR. Moreover, treatment of human bronchial epithelial BEAS-2B cells with mixed five indicative PAHs increased the formation of ROS, DNA damage (elevation in γ-H2AX), and protein levels of CAR, PXR, CYP1A1, 1A2, 1B1, while reduced the AhR protein, with the winter mixture more potent than summer. For the sources of PAHs, the stable carbon isotope ratio analysis and diagnostic ratios consistently pointed to petroleum and fossil fuel combustion as major sources. In conclusion, our findings suggest that particulates-bound PAHs deserve serious concerns for a cancer risk in such environment, and the development of new power sources for reducing fossil fuel combustion is highly encouraged.
Collapse
Affiliation(s)
- Yuting Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Bei Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China; Shenzhen Nanshan Medical Group HQ, Shenzhen, China
| | - Yixian Wei
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qiaowei Ma
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China; Dupont China Holdings LTD Guangzhou Branch, Guangzhou, China
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Ruifang Ye
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Minjuan Zeng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanhuan Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lianxian Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Huanwen Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|