1
|
Wu J, Lv T, Liu Y, Liu Y, Han Y, Liu X, Peng X, Tang F, Cai J. The role of quercetin in NLRP3-associated inflammation. Inflammopharmacology 2024; 32:3585-3610. [PMID: 39306817 DOI: 10.1007/s10787-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024]
Abstract
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yu Liu
- Department of Oncology, Gong'an County People's Hospital, Jingzhou, 434000, China
| | - Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Yukun Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, 434023, China
| | - Xin Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore, 138602, Singapore.
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
2
|
Li H, Zeng Y, Zi J, Hu Y, Ma G, Wang X, Shan S, Cheng G, Xiong J. Dietary Flavonoids Consumption and Health: An Umbrella Review. Mol Nutr Food Res 2024; 68:e2300727. [PMID: 38813726 DOI: 10.1002/mnfr.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/07/2024] [Indexed: 05/31/2024]
Abstract
SCOPE The current evidence between dietary flavonoids consumption and multiple health outcomes is inadequate and inconclusive. To summarize and evaluate the evidence for dietary flavonoids consumption and multiple health outcomes, an umbrella review of meta-analyses and systematic reviews is conducted. METHODS AND RESULTS PubMed, Ovid-EMBASE, and the Cochrane Database of Systematic Reviews are searched up to January 2024. The study includes a total of 32 articles containing 24 unique health outcomes in this umbrella review. Meta-analyses are recalculated by using a random effects model. Separate analyses are performed based on the kind of different flavonoid subclasses. The study finds some unique associations such as flavonol and gastric cancer, isoflavone and uterine fibroids and endometrial cancer, total flavonoids consumption and lung cancer, ovarian cancer, and prostate cancer. Overall, the study confirms the negative associations between dietary flavonoids consumption and type 2 diabetes mellitus, cardiovascular diseases, breast cancer, colorectal cancer, lung cancer, and mortality, while positive associations are observed for prostate cancer and uterine fibroids. CONCLUSION Although dietary flavonoids are significantly associated with many outcomes, firm generalizable conclusions about their beneficial or harmful effects cannot be drawn because of the low certainty of evidence for most of outcomes. More well-designed primary studies are needed.
Collapse
Affiliation(s)
- Haoqi Li
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaxian Zeng
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zi
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifan Hu
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Guochen Ma
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| |
Collapse
|
3
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
4
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
5
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
6
|
Brugge D, Li J, Zamore W. On the Need for Human Studies of PM Exposure Activation of the NLRP3 Inflammasome. TOXICS 2023; 11:202. [PMID: 36976967 PMCID: PMC10059209 DOI: 10.3390/toxics11030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter air pollution is associated with blood inflammatory biomarkers, however, the biological pathways from exposure to periferal inflammation are not well understood. We propose that the NLRP3 inflammasome is likely stimulated by ambient particulate matter, as it is by some other particles and call for more research into this pathway.
Collapse
Affiliation(s)
- Doug Brugge
- Department of Public Health Sciences, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Jianghong Li
- Institute for Community Research, Hartford, CT 06106, USA
| | - Wig Zamore
- Somerville Transportation Equity Partnership, Somerville, MA 02145, USA
| |
Collapse
|
7
|
Ma C, Xiang Q, Song G, Wang X. Quercetin and polycystic ovary syndrome. Front Pharmacol 2022; 13:1006678. [PMID: 36588716 PMCID: PMC9800798 DOI: 10.3389/fphar.2022.1006678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disease, and results to opsomenorrhea or amenorrhea, hairy, acne, acanthosis, infertility, abortion. In the long term, PCOS may also increase the risk of endometrial cancer, diabetes, hypertension, dyslipidemia and other diseases. Till now there is no specific drug for PCOS due to the unclearness of the cause and pathogenesis, as current treatments for PCOS only target certain symptoms. Quercetin (QUR) is a flavonoid drug widely found in Chinese herbal medicines, fruits, leaves, vegetables, seeds and plants roots. Studies on other diseases have found that QUR has anti-oxidant, anti-inflammatory, anti-insulin resistance, anti-cancer and other effects. Some studies have shown that serum testosterone (T), luteinizing hormone (LH), the LH/follicule-stimulating hormone (FSH) ratio, fasting glucose, fasting insulin, HOMA-IR and lipid levels are reduced in PCOS patients with QUR treatment. However, the mechanisms of QUR in PCOS patients have not been completely elucidated. In this review, we retrospect the basic characteristics of QUR, and in vitro studies, animal experiments and clinical trials of QUR and plant extracts containing QUR in the treatment of PCOS. We also summarized the effects and mechanism of QUR in ovarian cells in vitro and PCOS model rats, the changes in relevant parameters after QUR administration in PCOS patients, and its potentially therapeutic applications.
Collapse
Affiliation(s)
- Congshun Ma
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China,Department of Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Qianru Xiang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China,Department of Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China,*Correspondence: Ge Song, ; Xuefei Wang,
| | - Xuefei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Ge Song, ; Xuefei Wang,
| |
Collapse
|
8
|
Della Guardia L, Shin AC. PM 2.5-induced adipose tissue dysfunction can trigger metabolic disturbances. Trends Endocrinol Metab 2022; 33:737-740. [PMID: 36175280 DOI: 10.1016/j.tem.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Exposure to particulate matter ≤2.5 μm in diameter (PM2.5) alters cardiometabolic homeostasis. The reduced oxidative capacity in brown adipocytes and the development of inflammation and insulin resistance in white adipose tissue (WAT) can account for the dysmetabolic setting on PM2.5 exposure. In this forum article, we discuss relevant evidence to highlight a causal connection between PM2.5-induced adipose tissue dysfunction and cardiometabolic disturbances.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.
| | - Andrew C Shin
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
9
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Jiang J, Ding S, Zhang G, Dong Y. Ambient particulate matter exposure plus a high-fat diet exacerbate renal injury by activating the NLRP3 inflammasome and TGF-β1/Smad2 signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113571. [PMID: 35512472 DOI: 10.1016/j.ecoenv.2022.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a public health problem of which the prevalence is increasing worldwide. Several studies have reported that ambient particulate matter (PM) causes kidney injury, which may be related to the risk of CKD. However, the underlying molecular mechanisms have not been fully clarified. In addition, whether a high-fat diet (HFD) could exacerbate ambient PM-induced nephrotoxicity has not been evaluated. This study aimed to investigate the combined effect of ambient PM and a HFD on renal injury. METHODS AND RESULTS Male C57BL/6 J mice were fed either a normal diet or a HFD and exposed to filtered air (FA) or particulate matter (PM) for 18 weeks. In the present study, we observed that renal function changed (serum blood urea nitrogen and serum creatinine), and exposure to PM and a HFD caused a synergistic effect on renal injury. Histopathological analysis showed that PM exposure induced renal fibrosis in mice, and combined exposure to PM and a HFD exacerbated these adverse effects. Moreover, ambient PM exposure activated the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome and increased the inflammatory response, as indicated by the increases in interleukin-1β, interleukin-6 and tumor necrosis factor-α in the serum and kidney, as well as the upregulation of specific renal fibrosis-related markers (transforming growth factor-β1 and p-Smad2) in the kidney tissues of mice. Furthermore, combined exposure to PM and a HFD augmented these changes in the kidney. In vitro, inhibition of the NLRP3 inflammasome by MCC950 (an inhibitor of NLRP3) reduced the levels of proinflammatory cytokines and the expression of transforming growth factor-β1 and p-Smad2 in HK-2 cells. CONCLUSION Taken together, our data indicated that PM exposure caused renal inflammation and induced profibrotic effects on the kidney, and combined exposure to ambient PM and a HFD exacerbated renal injury, which may involve activation of the NLRP3 inflammasome and the TGF-β1/Smad2 signaling pathway.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China.
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, PR China
| | - Yaqi Dong
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, PR China
| |
Collapse
|
11
|
Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7811-7836. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Airborne particulate matter (PM) exerts huge negative impacts on human health worldwide, not only targeting the respiratory system but more importantly inducing and aggravating associated chronic diseases like asthma, lung cancer, atherosclerosis, diabetes mellitus and Alzheimer diseases. Food-derived bioactive compounds like vitamins, dietary polyphenols, omega-3 polyunsaturated fatty acids and sulforaphane are feasible alternative therapeutic approaches against PM-mediated potential health damages, drawing great attention in recent years. In this review, the association between PM exposure and risks of developing chronic diseases, and the detailed mechanisms underlying the detrimental effects of PM will be discussed. Subsequently, principal food-derived bioactive compounds, with emphasize on the preventative or protective effects against PM, along with potential mechanisms will be elucidated. This comprehensive review will discuss and present current research findings to reveal the nutritional intervention as a preventative or therapeutic strategy against ambient air pollution, thereby lowering the risk of developing chronic diseases.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|