1
|
Zhao Y, Sun Y, Sun H, Zuo F, Kuang S, Zhang S, Wang F. Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. TOXICS 2024; 12:648. [PMID: 39330576 PMCID: PMC11436144 DOI: 10.3390/toxics12090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
As the energy demand increases, there is a significant expansion and utilization of oil resources, resulting in the inevitable occurrence of environmental pollution. Oil has been identified as a prevalent soil contaminant, posing substantial risks to the soil ecosystems. The remediation of soil contaminated with oil is a formidable undertaking. Increasing evidence shows that chemical washing, a remediation technique employing chemical reagents like surfactants to augment the solubilization, desorption, and separation of petroleum hydrocarbons in soil, proves to be an efficacious approach, but the latest advances on this topic have not been systematically reviewed. Here, we present the state of knowledge about the surfactant-based chemical washing to remediate oil-contaminated soil. Using the latest data, the present article systematically summarizes the advancements on ex situ chemical washing of oil pollution and provides a concise summary of the underlying principles. The use of various surfactants in chemical washing and the factors influencing remediation efficiency are highlighted. Based on the current research status and knowledge gaps, future perspectives are proposed to facilitate chemical washing of oil-polluted soil. This review can help recognize the application of chemical washing in the remediation of oil-polluted soil.
Collapse
Affiliation(s)
- Yanxin Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haihan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fang Zuo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Painuly R, Anand V. Examining the Interplay of Hydrolysed Polyacrylamide and Sodium Dodecyl Sulfate on Emulsion Stability: Insights from Turbiscan and Electrocoalescence Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17710-17721. [PMID: 39119715 DOI: 10.1021/acs.langmuir.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Enhanced oil recovery (EOR) is utilized in the oil and gas production industry to extract additional oil from underground reservoirs. In chemically enhanced oil recovery, surfactant and polymeric water are injected separately or in a mixture. Injected fluids can form stable emulsions during oil production. This surfactant, polymer-loaded water-in-oil emulsion, must be separated to treat crude oil and avoid any corrosion or deactivation of catalysts in the refinery. An electrocoalecer technique is utilized to separate the water from the emulsion under the application of an electric field. To improve the efficiency of the EOR and electrocoalescers, it is essential to investigate the impact of surfactants, polymers, and their mixture interaction. In this study, the effects of surfactant (sodium dodecyl sulfate (SDS)), polymer (hydrolyzed polyacrylamide (HPAM)), and their mixture with a wide range of concentrations were analyzed using turbiscan, bottle electrocoalecer, interfacial tension (IFT), and conductivity. Our study shows that when SDS was used independently, the viscosity of the dispersed phase did not change. Surprisingly, when SDS was combined with HPAM, the overall viscosity of the dispersed phase mixture decreased. HPAM and SDS contribute to an increase in the conductivity of the dispersed phase. Conductivity, IFT, and viscosity are critical factors in studying electrocoalescence. Our detailed study found that SDS is the primary factor in stabilizing the emulsion compared to HPAM using turbiscan. The electrocoalecer study shows that in the case of a deionized water-based emulsion, the separation efficiency is 98% in 10 min. In contrast, a mixture of HPAM polymer with a concentration of 2000 ppm and SDS with a concentration of 5000 ppm stabilized emulsion shows 84% separation in 10 min. The outcome of this study helps design the electrocoalescer for separating complex water-in-oil emulsion.
Collapse
Affiliation(s)
- Rahul Painuly
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| | - Vikky Anand
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
- Rishabh Centre for Research and Innovation in Clean Energy, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| |
Collapse
|
3
|
Ashkanani Z, Mohtar R, Al-Enezi S, Smith PK, Calabrese S, Ma X, Abdullah M. AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133813. [PMID: 38402679 DOI: 10.1016/j.jhazmat.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.
Collapse
Affiliation(s)
- Zainab Ashkanani
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Rabi Mohtar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salah Al-Enezi
- Petroleum Research Center, Kuwait Institute for Scientific Research, Al-Ahmadi, Kuwait
| | - Patricia K Smith
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Meshal Abdullah
- Sultan Qaboos University, College of Arts & Social Sciences. Al-Khoud, Sultanate of Oman
| |
Collapse
|
4
|
Tong WK, Dai C, Hu J, Li J, Gao MT, You X, Feng XR, Li Z, Zhou L, Zhang Y, Lai X, Kahon L, Fu R. A novel eco-friendly strategy for removing phenanthrene from groundwater: Synergism of nanobubbles and rhamnolipid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168099. [PMID: 37884130 DOI: 10.1016/j.scitotenv.2023.168099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Nanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene). Through the analysis of the two-site non-equilibrium diffusion model, there was a synergistic effect between NBs and RL. The introduction of NBs led to a reduction of up to 24.3 % in the total removal time of phenanthrene. The direct reason for this was that with NBs, the retardation factor of RL was reduced by 1.9 % to 15.4 %, which accelerated the solute replacement of RL. The reasons for this synergy were multifaceted. Detailed analysis reveals that NBs improve RL's colloidal stability, increase its absolute zeta potential, and reduce its soil adsorption capacity by 13.3 %-19.9 %. Furthermore, NBs and their interaction with RL substantially diminish the surface tension, contact angle, and dynamic viscosity of the leaching solution. These changes in surface thermodynamic and rheological properties significantly enhance the migration efficiency of the eluent. The research outcomes facilitate a thorough comprehension of NBs' attributes and their relevant applications, and propose an eco-friendly method to improve the efficiency of surfactant remediation.
Collapse
Affiliation(s)
- Wang Kai Tong
- College of Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chaomeng Dai
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueji You
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Xin Ru Feng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Li
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Lang Zhou
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, Tianjin 300072, China
| | - Long Kahon
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universitiy Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Rongbing Fu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Sánchez Mata O, Aguilera Flores MM, Ureño García BG, Ávila Vázquez V, Cabañas García E, Franco Villegas EA. Bioremediation of Automotive Residual Oil-Contaminated Soils by Biostimulation with Enzymes, Surfactant, and Vermicompost. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6600. [PMID: 37623183 PMCID: PMC10454165 DOI: 10.3390/ijerph20166600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Contamination of soils by automotive residual oil represents a global environmental problem. Bioremediation is the technology most suitable to remove this contaminant from the medium. Therefore, this work aimed to evaluate the effectiveness of bioremediation of automotive residual oil-contaminated soils by biostimulation with enzymes, surfactant, and vermicompost. The bioremediation efficiency was examined using a factorial design of 24 to determine the effect of the time, pH and temperature conditions, biostimulation with enzyme-vermicompost, and biostimulation with enzyme-surfactant. Enzymes obtained from Ricinus communis L. seeds, commercial vermicompost, and Triton X-100 were used. Results showed that the highest removal efficiency (99.9%) was achieved at 49 days, with a pH of 4.5, temperature of 37 °C, and using biostimulation with enzyme-vermicompost (3% w/v-5% w/w). The addition of surfactant was not significant in increasing the removal efficiency. Therefore, the results provide adequate conditions to bioremediate automotive residual oil-contaminated soils by biostimulation using enzymes supported with vermicompost.
Collapse
Affiliation(s)
- Omar Sánchez Mata
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Miguel Mauricio Aguilera Flores
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Brenda Gabriela Ureño García
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Verónica Ávila Vázquez
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| | - Emmanuel Cabañas García
- Scientific and Technological Studies Center No. 18, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico
| | - Efrén Alejandro Franco Villegas
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico (V.Á.V.)
| |
Collapse
|
6
|
Báez ME, Sarkar B, Peña A, Vidal J, Espinoza J, Fuentes E. Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121545. [PMID: 37004862 DOI: 10.1016/j.envpol.2023.121545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The fungicide chlorothalonil (CTL) and its metabolite hydroxy chlorothalonil (OH-CTL) constitute a risk of soil and water contamination, highlighting the need to find suitable soil remediation methods for these compounds. Surfactants can promote the bioavailability of organic compounds for enhanced microbial degradation, but the performance depends on soil and surfactant properties, sorption-desorption equilibria of contaminants and surfactants, and possible adverse effects of surfactants on microorganisms. This study investigated the influence of five surfactants [e.g., Triton X-100 (TX-100), sodium dodecyl sulphate (SDS), hexadecyltrimethylammonium bromide (HDTMA), Aerosol 22 and Tween 80] on the sorption-desorption, degradation, and mobility of CTL and OH-CTL in two volcanic and one non-volcanic soil. Sorption and desorption of fungicides depended on the sorption of surfactants on soils, surfactants' capacity to neutralize the net negative charge of soils, surfactants' critical micellar concentration, and pH of soils. HDTMA was strongly adsorbed on soils, which shifted the fungicide sorption equilibria by increasing the distribution coefficient (Kd) values. Contrarily, SDS and TX-100 lowered CTL and OH-CTL sorption on soils by decreasing the Kd values, which resulted in an efficient extraction of the fungicide compounds from soil. SDS increased the degradation of CTL, especially in the non-volcanic soil (DT50 values were 14 and 7 days in natural and amended soils, with final residues <7% of the initial dose), whereas TX-100 enabled an early start and sustenance of OH-CTL degradation in all soils. CTL and OH-CTL stimulated soil microbial activities without noticeable deleterious effects of the surfactants. SDS and TX-100 also reduced the vertical transport of OH-CTL in soils. Results of this study could be extended to soils in other regions of the world because the tested soils represent widely different physical, chemical, and biological properties.
Collapse
Affiliation(s)
- María E Báez
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Aránzazu Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Jorge Vidal
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Jeannette Espinoza
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Edwar Fuentes
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| |
Collapse
|
7
|
Dos Santos AV, Simonelli G, Dos Santos LCL. Review of the application of surfactants in microemulsion systems for remediation of petroleum contaminated soil and sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32168-32183. [PMID: 36725801 DOI: 10.1007/s11356-023-25622-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Microemulsions are important for soil and sediment remediation technology. The characteristics of the surfactants that make up these microemulsions include low sorption into soil or sediments, low surface and interfacial tension, the ability to penetrate tiny pores, and good solubilization of contaminants. This review revealed that microemulsions formulated with nonionic and anionic surfactants have higher recovery efficiencies for hydrophobic contaminants than cationic ones, as evidenced by the surveyed studies reporting effective remediation of soils and sediments using on microemulsions. These microemulsified systems have been found to remove petroleum and its derivatives from soil or sediments at percentages ranging from 40 to 100%. As such, this review can aid with the choice of surfactants used in microemulsions for remediation, such as those with plant-based components, which are promising solutions for the remediation of contaminated soils due to their contaminant extraction efficiency and biodegradability.
Collapse
Affiliation(s)
- Adriana Vieira Dos Santos
- Oil, Gas, and Biofuels Research Group, Postgraduate Program of Chemical Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, BA, Brazil.
- Postgraduate Program in Geochemistry: Petroleum and Environment, Institute of Geoscience, Federal University of Bahia (UFBA), Salvador, BA, Brazil.
- Federal Institute of Education, Science and Technology of Bahia (IFBA), Energy Advanced Research and Study Group (GEPAE), Campus Lauro de Freitas, BA, Lauro de Freitas, Brazil.
| | - George Simonelli
- Oil, Gas, and Biofuels Research Group, Postgraduate Program of Chemical Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Luiz Carlos Lobato Dos Santos
- Oil, Gas, and Biofuels Research Group, Postgraduate Program of Chemical Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, BA, Brazil
- Postgraduate Program in Geochemistry: Petroleum and Environment, Institute of Geoscience, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| |
Collapse
|
8
|
Bolan S, Padhye LP, Mulligan CN, Alonso ER, Saint-Fort R, Jasemizad T, Wang C, Zhang T, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130189. [PMID: 36265382 DOI: 10.1016/j.jhazmat.2022.130189] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Catherine N Mulligan
- Department of Bldg, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Emilio Ritore Alonso
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
| | - Roger Saint-Fort
- Department of Environmental Science, Faculty of Science & Technology, Mount Royal University, Calgary, AB T3E6K6, Canada
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
9
|
Cao H, Li X, Qu C, Gao M, Cheng H, Ni N, Yao S, Bian Y, Gu C, Jiang X, Song Y. Bioaccessibility and Toxicity Assessment of Polycyclic Aromatic Hydrocarbons in Two Contaminated Sites. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:592-599. [PMID: 35635563 DOI: 10.1007/s00128-022-03530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil contaminants, and their bioaccessibility determines their environmental risks in contaminated land. In the present study, the residual concentrations of PAHs in the soils of two industrial sites were determined, and their bioaccessibility was estimated by the hydroxypropyl-β-cyclodextrin extraction (HPCD) extraction method. The results showed heavy PAH contamination at both site S1 (0.38-3342.5 mg kg-1) and site S2 (0.2-138.18 mg kg-1), of which high molecular weight (HMW) PAHs (4-, 5-, and 6-ring compounds) accounted for approximately 80%. The average bioaccessibility of PAHs at sites S1 and S2 was 52.02% and 29.28%, respectively. The bioaccessibility of certain PAH compounds decreased with increasing ring number of the molecule. Lower PAH bioaccessibility was detected in loamy and silty soil textures than in sandy soil. Moreover, among the soil properties, the dissolved organic matter, total organic carbon, total potassium, and total manganese concentrations had significant effects on the bioaccessibility of PAHs. The toxicity analysis showed that the composition and bioaccessibility of PAHs could affect their potential toxicity in soil. We suggest that bioaccessibility should be taken into consideration when assessing the toxicity of PAHs in soil, and more attention should be given to low-ring PAHs with high bioaccessibility.
Collapse
Affiliation(s)
- Huihui Cao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changsheng Qu
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210000, China
| | - Meng Gao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|