1
|
Daché E, Zeppilli D, Sarrazin J, Singh R, Baldrighi E, Miljutin D, Boyé A. MarNemaFunDiv: a first comprehensive dataset of functional traits for marine nematodes. Sci Data 2025; 12:752. [PMID: 40328803 PMCID: PMC12056057 DOI: 10.1038/s41597-025-05105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
Here, we present the first comprehensive dataset of functional traits for marine nematodes (MarNemaFunDiv). In this study, we propose 16 functional traits (life strategy, body shape, trophic group, oesophageal bulb, cuticle complexity, adhesive structures and ambulatory setae, head shape, amphid (shape and size), sensory structures (head and rest of the body), light sensing, male reproductive system (spicule, pre/postcloacal supplements and gubernaculum) and tail shape). Some of these traits were already used in marine ecology as functional categories (e.g. trophic groups, tail shapes, c-p classes) while others have never been considered before. These 16 traits were described and attributed to 86 nematode genera, representing the most abundant ones in shallow-water and deep-sea ecosystems. The matrix proposed in this study encompasses a comprehensive range of traits, enabling it to tackle a variety of ecological questions in the future.
Collapse
Affiliation(s)
- Edwin Daché
- Univ. Brest, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France.
| | - Daniela Zeppilli
- Univ. Brest, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France
| | - Jozée Sarrazin
- Univ. Brest, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France
| | | | - Elisa Baldrighi
- Department of Biology, University of Nevada-Reno, Reno, NV, USA
| | - Dmitry Miljutin
- BioConsult GmbH & Co. KG, auf der Muggenburg 30 28217, Bremen, Germany
| | - Aurélien Boyé
- IFREMER-DYNECO/LEBCO, Centre de Bretagne, CS1007 29280, Plouzané, France
| |
Collapse
|
2
|
Elyousfi S, Ishak S, Beyrem H, Al-Hoshani N, Abd-Elkader OH, Pacioglu O, Badraoui R, Ali MAM, Hedfi A, Boufahja F, Dellali M. Experimental exposure of bivalves (Ruditapes decussatus) and meiobenthos (Metoncholaimus pristiurus) to 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) assessed by biochemical, computational modeling, and microbial tools. MARINE POLLUTION BULLETIN 2024; 209:117191. [PMID: 39486207 DOI: 10.1016/j.marpolbul.2024.117191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
PBDE-47, with lipophilic properties, was found in mussels, clams, and fish where it causes developmental issues, and endocrine and immune disruptions. The current study investigated the effects of PBDE-47 (0.1, 1, and 10 μg.l-1) on the clams Ruditapes decussatus and the nematode Metoncholaimus pristiurus. This flame retardant reduced CAT and GST activities in R. decussatus after only 2 days. The AChE activity was similar after 2 days but decreased after 7 days in the digestive gland. In gills, a decrease in AChE activities was observed for both time slots. The clearance rates increased following exposure for 2 days but decreased after one week. The exposure of M. pristiurus to PBDE-47 was accompanied by an increase in CAT and GST activities and a decrease in that of AChE. The microbial descriptors supported the obtained results for this nematode. Finally, the computational analyses supported the ecotoxicity of PBDE-47 for both invertebrate species.
Collapse
Affiliation(s)
- Souhail Elyousfi
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Sahar Ishak
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Hamouda Beyrem
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia.
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Omar H Abd-Elkader
- Physics & Astronomy Department, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Department of Bioinformatics, Splaiul Independenței 296, 060031 Bucharest, Romania.
| | - Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia.
| | - Mohamed A M Ali
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Mohamed Dellali
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia.
| |
Collapse
|
3
|
Ishak S, Allouche M, Alotaibi GS, Alwthery NS, Al-Subaie RA, Al-Hoshani N, Plavan OA, Selamoglu Z, Özdemir S, Plavan G, Badraoui R, Rudayni HA, Boufahja F. Experimental and computational assessment of Antiparkinson Medication effects on meiofauna: Case study of Benserazide and Trihexyphenidyl. MARINE POLLUTION BULLETIN 2024; 205:116668. [PMID: 38972217 DOI: 10.1016/j.marpolbul.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Two concentrations (6.25 and 1.25 mg/L) were used for two Parkinson's disease medications, Benserazide, and Trihexyphenidyl, to test their effects on the meiobenthic nematofauna. It is predicted that these highly hydrosoluble drugs will end up in marine environments. The results showed that both medications when added alone, induced (i) important changes in the numbers and (ii) taxonomic composition. The impact of Benserazide and Trihexyphenidyl was also reflected in the (iii) functional traits of nematofauna, with the most affected categories following exposure being the trophic group 1B, the clavate tails, the circular amphids, the c-p2 life history, and the body length of 1-2 mm. These results were supported by the molecular interactions of the studied drugs with both GLD-3 and SDP proteins of Caenorhabditis elegans. (iv) The mixtures of both drugs did not show any changes in the nematode communities, suggesting that no synergistic or antagonistic interactions exist between them.
Collapse
Affiliation(s)
- Sahar Ishak
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia
| | - Mohamed Allouche
- LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia; Biology Department, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, BP: 382, Tunisia
| | - Ghadah S Alotaibi
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nada S Alwthery
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Raghad A Al-Subaie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Oana-Alexandra Plavan
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Iasi, Romania.
| | - Zeliha Selamoglu
- Department of Medical Biology, Medicine Faculty, Nigde Omer Halisdemir University, Nigde, Turkey.
| | - Sadin Özdemir
- Food Processing Programme Technical Science Vocational School Mersin University, TR-33343 Yenisehir, Mersin, Turkey.
| | - Gabriel Plavan
- Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University, Bvd. Carol I, No. 20A, 700505, Iasi, Romania.
| | - Riadh Badraoui
- Department of Biology, Laboratory of General Biology, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia.
| | - Hassan A Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
4
|
Bin-Jumah MN. Are anticoagulant drugs ecotoxic for meiobenthic nematodes from Saudi Arabia? First data on taxon/functional diversity and computational evidences. MARINE POLLUTION BULLETIN 2024; 200:116029. [PMID: 38262212 DOI: 10.1016/j.marpolbul.2024.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Community-level effects of anticoagulants have little been studied in the laboratory. In the current study, the different effects of Warfarin and Tinzaparin, individually or in combination, on meiofauna were investigated for the first time using two concentrations (5 and 25 mg·l-1) of Warfarin (W1 and W2) and Tinzaparin (T1 and T2) for 30 days. The results obtained highlighted the highest tolerance of nematodes and amphipods toward the two anticoagulants tested. Moreover, nematode abundance and taxonomic diversity decreased directly after exposure to T2 and T2W1 because of the high mortality of diatom feeders and their replacement by non-selective deposit feeders (case of Tinzaparin) or omnivores-carnivores (case of Warfarin). The relative taxon/functional similarity between controls and mixtures T1W1 and T2W2 recommends that the toxicity of Tinzaparin can be attenuated by Warfarin. Finally, the computational study of Warfarin supports its potential ecotoxicity since it satisfactorily bound and interacted with GLD-3 and SDP macromolecules.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
5
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
6
|
Bin-Jumah MN. Do functional traits and biochemical biomarkers of the nematode Oncholaimus campylocercoides De Coninck and Schuurmans Stekhoven, 1933 affected by fluoranthene and polystyrene microplastics? Results from a microcosm bioassay and molecular modeling. MARINE POLLUTION BULLETIN 2023; 194:115294. [PMID: 37506479 DOI: 10.1016/j.marpolbul.2023.115294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The current experiment measured the multifaceted effects of polystyrene and fluoranthene, acting alone or in a mixture, on the meiobenthic nematode species Oncholaimus campylocercoides. This Oncholaimid was first experimentally selected from an entire nematode assemblage taken from the Jeddah coasts (Saudi Arabia). Several discernible changes were found in morphometry and functional traits after exposure to single and combined treatments. An increase in the activity of the biochemical biomarkers catalase and glutathione S-transferase was also observed following the exposure of males and gravid females of O. campylocercoides to 37.5 ng fluoranthene·g-1 dry weight (DW) and 62.5 mg polystyrene·kg-1 DW paralleled by a higher vulnerability of females. Moreover, the reproduction and feeding of this species were impaired, starting from 37.5 ng fluoranthene·g-1 and 62.5 mg polystyrene·kg-1, respectively. These results have been confirmed by good binding affinities and molecular interactions of fluoranthene and polystyrene with both GLD-3 and SDP receptors.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
7
|
Bellakhal M, Ishak S, Al-Hoshani N, Qurtam AA, Al-Zharani M, Pacioglu O, Boufahja F. The multifaceted effects of fluoranthene and polystyrene on the taxonomic composition and associated functional traits of marine meiofauna, by using single and mixture applications. MARINE POLLUTION BULLETIN 2023; 194:115390. [PMID: 37573818 DOI: 10.1016/j.marpolbul.2023.115390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
The current experiment measured the multifaceted effects of polystyrene and fluoranthene, acting alone or in a mixture on marine meiofauna, but with a special focus on nematodes' morphological and functional traits. The results showed changes in the abundances for all tested concentrations of both compounds. The nematode communities exposed to the highest concentrations of fluoranthene (30 ng.g-1 Dry Weight (DW)) and polystyrene (100 mg.kg-1 DW) alone or in a mixture, were significantly less diverse compared to control and were associated with significant changes in the percentage of taxonomic composition and feeding-guilds. The most sensitive taxa to fluoranthene comprised epistratum feeders, whereas the nematodes mostly affected by polystyrene were omnivores-carnivores. A new functional tool, the Index of Sensitivity (IOS), proved to be reliable in depicting the changes that occurred in the taxonomic and functional features of the nematofauna.
Collapse
Affiliation(s)
- Meher Bellakhal
- Higher Institute of Fishery and Aquaculture of Bizerte, University of Carthage, Tunisia
| | - Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashraf A Qurtam
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
8
|
Hedfi A, Ben Ali M, Korkobi M, Allouche M, Harrath AH, Beyrem H, Pacioglu O, Badraoui R, Boufahja F. The exposure to polyvinyl chloride microplastics and chrysene induces multiple changes in the structure and functionality of marine meiobenthic communities. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129161. [PMID: 35739702 DOI: 10.1016/j.jhazmat.2022.129161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The effects of microplastics and sorbed polycyclic aromatic hydrocarbons at community levels were rarely assessed in laboratory experiments, despite their obvious advantage in reflecting better the natural conditions compared to traditionally single species-focused toxicological experiments. In the current study, the multifaceted effects of polyvinyl chloride and chrysene, acting alone or combined, on general marine meiobenthos, but with a special focus on free-living marine nematode communities were tested in a laboratory experiment carried in microcosms. The meiobenthos was exposed to two polyvinyl chloride (5 and 10 mg.kg-1 Dry Weight 'DW') and chrysene (37.5 and 75 ng.g-1 DW) concentrations, respectively, as well as to a mixture of both compounds, for 30 days. The results highlighted a significant decrease in the abundance of all meiobenthic generic groups, including nematodes, directly with increasing dosages of these compounds when added alone. The addition of chrysene adheres to microplastics, making the sediment matrix glueyer, hence inducing greater mortality among generic meiobenthic groups. Moreover, the nematofauna went through a strong restructuring phase following the exposure to both compounds when added alone, leading to the disappearance of sensitive nematodes and their replacement with tolerant taxa. However, the similarity in nematofauna composition between control and polyvinyl chloride and chrysene mixtures suggests that the toxicity of the latter could be attenuated by its physical bonding to the former pollutant. Other changes in the functional traits within the nematode communities were a decline in the fertility of females and an increase of the pharyngeal pumping power following exposure to both pollutants for the dominant species. The latter results were also supported by additional toxicokinetics analyses and in silico modeling.
Collapse
Affiliation(s)
- Amor Hedfi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Manel Ben Ali
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Marwa Korkobi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Riadh Badraoui
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|