1
|
Wang R, Lu S, Deng F, Wu L, Yang G, Chong S, Liu Y. Enhancing the understanding of SARS-CoV-2 protein with structure and detection methods: An integrative review. Int J Biol Macromol 2024; 270:132237. [PMID: 38734351 DOI: 10.1016/j.ijbiomac.2024.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.
Collapse
Affiliation(s)
- Ruiqi Wang
- Shenyang University of Chemical Technology, Shenyang 110142, China; National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- National Institute of Metrology, Beijing 100029, China
| | - Fanyu Deng
- National Institute of Metrology, Beijing 100029, China; North University of China, Taiyuan 030051, China
| | - Liqing Wu
- National Institute of Metrology, Beijing 100029, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, China
| | - Siying Chong
- Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yahui Liu
- National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
2
|
Medrano-Lopez JA, Villalpando I, Salazar MI, Torres-Torres C. Hierarchical Nanobiosensors at the End of the SARS-CoV-2 Pandemic. BIOSENSORS 2024; 14:108. [PMID: 38392027 PMCID: PMC10887370 DOI: 10.3390/bios14020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Nanostructures have played a key role in the development of different techniques to attack severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Some applications include masks, vaccines, and biosensors. The latter are of great interest for detecting diseases since some of their features allowed us to find specific markers in secretion samples such as saliva, blood, and even tears. Herein, we highlight how hierarchical nanoparticles integrated into two or more low-dimensional materials present outstanding advantages that are attractive for photonic biosensing using their nanoscale functions. The potential of nanohybrids with their superlative mechanical characteristics together with their optical and optoelectronic properties is discussed. The progress in the scientific research focused on using nanoparticles for biosensing a variety of viruses has become a medical milestone in recent years, and has laid the groundwork for future disease treatments. This perspective analyzes the crucial information about the use of hierarchical nanostructures in biosensing for the prevention, treatment, and mitigation of SARS-CoV-2 effects.
Collapse
Affiliation(s)
- Jael Abigail Medrano-Lopez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Isaela Villalpando
- Centro de Investigación para los Recursos Naturales, Salaices 33941, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
3
|
Muñoz-Urtubia N, Vega-Muñoz A, Estrada-Muñoz C, Salazar-Sepúlveda G, Contreras-Barraza N, Salinas-Martínez N, Méndez-Celis P, Carmelo-Adsuar J. Wearable biosensors for human health: A bibliometric analysis from 2007 to 2022. Digit Health 2024; 10:20552076241256876. [PMID: 38882252 PMCID: PMC11179482 DOI: 10.1177/20552076241256876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Objective This study aimed to determine the status of scientific production on biosensor usage for human health monitoring. Methods We used bibliometrics based on the data and metadata retrieved from the Web of Science between 2007 and 2022. Articles unrelated to health and medicine were excluded. The databases were processed using the VOSviewer software and auxiliary spreadsheets. Data extraction yielded 275 articles published in 161 journals, mainly concentrated on 13 journals and 881 keywords plus. Results The keywords plus of high occurrences were estimated at 27, with seven to 30 occurrences. From the 1595 identified authors, 125 were consistently connected in the coauthorship network in the total set and were grouped into nine clusters. Using Lotka's law, we identified 24 prolific authors, and Hirsch index analysis revealed that 45 articles were cited more than 45 times. Crosses were identified between 17 articles in the Hirsch index and 17 prolific authors, highlighting the presence of a large set of prolific authors from various interconnected clusters, a triad, and a solitary prolific author. Conclusion An exponential trend was observed in biosensor research for health monitoring, identifying areas of innovation, collaboration, and technological challenges that can guide future research on this topic.
Collapse
Affiliation(s)
- Nicolás Muñoz-Urtubia
- International Graduate School, University of Extremadura, Caceres, Spain
- Instituto de Ciencias de la Educación, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Vega-Muñoz
- Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Facultad de Ciencias Empresariales, Universidad Arturo Prat, Iquique, Chile
| | - Carla Estrada-Muñoz
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Guido Salazar-Sepúlveda
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Facultad de Ingeniería y Negocios, Universidad de Las Américas, Concepción, Chile
| | | | - Nicolás Salinas-Martínez
- Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | | |
Collapse
|
4
|
Hughes C, Sreenilayam S, Brabazon D. Laser nanostructured gold biosensor for proto-oncogene detection. Sci Rep 2023; 13:17196. [PMID: 37821490 PMCID: PMC10567688 DOI: 10.1038/s41598-023-44372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
The advancement of biosensor research has been a primary driving force in the continuing progress of modern medical science. While traditional nanofabrication methods have long been the foundation of biosensor research, recent years have seen a shift in the field of nanofabrication towards laser-based techniques. Here we report a gold-based biosensor, with a limit of detection (LoD) 3.18 µM, developed using environmentally friendly Laser Ablation Synthesis in Liquid (LASiS) and Confined Atmospheric Pulsed-laser (CAP) deposition techniques for the first time. The sensors were able detect a DNA fragment corresponding to the longest unpaired sequence of the c-Myc gene, indicating their potential for detecting such fragments in the ctDNA signature of various cancers. The LoD of the developed novel biosensor highlights its reliability and sensitivity as an analytical platform. The reproducibility of the sensor was examined via the production and testing of 200 sensors with the same fabrication methodology. This work offers a scalable, and green approach to fabricating viable biosensors capable of detecting clinically relevant oncogenic targets.
Collapse
Affiliation(s)
- Cian Hughes
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin-9, Ireland
| | - Sithara Sreenilayam
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin-9, Ireland
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin-9, Ireland.
| |
Collapse
|
5
|
Sun Q, Ning Q, Li T, Jiang Q, Feng S, Tang N, Cui D, Wang K. Immunochromatographic enhancement strategy for SARS-CoV-2 detection based on nanotechnology. NANOSCALE 2023; 15:15092-15107. [PMID: 37676509 DOI: 10.1039/d3nr02396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) has been catastrophic to both human health and social development. Therefore, developing highly reliable and sensitive point-of-care testing (POCT) for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a priority. Among all available POCTs, the lateral flow immunoassay (LFIA, also known as immunochromatography) has proved to be effective due to its accuracy, portability, convenience, and speed. In areas with a scarcity of laboratory resources and medical personnel, the LFIA provides an affordable option for the diagnosis of COVID-19. This review offers a comprehensive overview of methods for improving the sensitivity of SARS-CoV-2 detection using immunochromatography based on nanotechnology, sorted according to the different detection targets (antigens, antibodies, and nucleic acids). It also looks into the performance and properties of the various sensitivity enhancement strategies, before delving into the remaining challenges in COVID-19 diagnosis through LFIA. Ultimately, it seeks to provide helpful guidance in selecting an appropriate strategy for SARS-CoV-2 immunochromatographic detection based on nanotechnology.
Collapse
Affiliation(s)
- Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ning Tang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| |
Collapse
|
6
|
Rong G, Xu Y, Sawan M. Machine Learning Techniques for Effective Pathogen Detection Based on Resonant Biosensors. BIOSENSORS 2023; 13:860. [PMID: 37754094 PMCID: PMC10526989 DOI: 10.3390/bios13090860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
We describe a machine learning (ML) approach to processing the signals collected from a COVID-19 optical-based detector. Multilayer perceptron (MLP) and support vector machine (SVM) were used to process both the raw data and the feature engineering data, and high performance for the qualitative detection of the SARS-CoV-2 virus with concentration down to 1 TCID50/mL was achieved. Valid detection experiments contained 486 negative and 108 positive samples, and control experiments, in which biosensors without antibody functionalization were used to detect SARS-CoV-2, contained 36 negative samples and 732 positive samples. The data distribution patterns of the valid and control detection dataset, based on T-distributed stochastic neighbor embedding (t-SNE), were used to study the distinguishability between positive and negative samples and explain the ML prediction performance. This work demonstrates that ML can be a generalized effective approach to process the signals and the datasets of biosensors dependent on resonant modes as biosensing mechanism.
Collapse
Affiliation(s)
| | | | - Mohamad Sawan
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China; (G.R.); (Y.X.)
| |
Collapse
|
7
|
Esquivel-Ortiz KM, Antonio-Pérez A, Torres-Huerta AL. In Silico Analysis of Toehold-Aptamer Sequences Targeting the SARS-CoV-2 Nucleocapsid Protein Gene for Biosensor Development. IECB 2023 2023:21. [DOI: 10.3390/iecb2023-14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Karla M. Esquivel-Ortiz
- Department of Engineering and Sciences, Monterrey Institute of Technology and Higher Education, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juarez, Ciudad Lopez Mateos 52926, Mexico
| | - Aurora Antonio-Pérez
- Department of Engineering and Sciences, Monterrey Institute of Technology and Higher Education, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juarez, Ciudad Lopez Mateos 52926, Mexico
| | - Ana L. Torres-Huerta
- Department of Engineering and Sciences, Monterrey Institute of Technology and Higher Education, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juarez, Ciudad Lopez Mateos 52926, Mexico
| |
Collapse
|
8
|
Ma Z, Sun Z, Lv X, Chen H, Geng Y, Geng Z. Sensitivity-enhanced nanoplasmonic biosensor using direct immobilization of two engineered nanobodies for SARS-CoV-2 spike receptor-binding domain detection. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 383:133575. [PMID: 36873859 PMCID: PMC9957344 DOI: 10.1016/j.snb.2023.133575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Sensitive, rapid, and easy-to-implement biosensors are critical in responding to highly contagious and fast-spreading severe acute respiratory syndrome coronavirus (SARS-CoV-2) mutations, enabling early infection screening for appropriate isolation and treatment measures to prevent the spread of the virus. Based on the sensing principle of localized surface plasmon resonance (LSPR) and nanobody immunological techniques, an enhanced sensitivity nanoplasmonic biosensor was developed to quantify the SARS-CoV-2 spike receptor-binding domain (RBD) in serum within 30 min. The lowest concentration in the linear range can be detected down to 0.01 ng/mL by direct immobilization of two engineered nanobodies. Both the sensor fabrication process and immune strategy are facile and inexpensive, with the potential for large-scale application. The designed nanoplasmonic biosensor achieved excellent specificity and sensitivity for SARS-CoV-2 spike RBD, providing a potential option for accurate early screening of the novel coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Zhengtai Ma
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zengchao Sun
- The Chinese Academy of Sciences Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Lv
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Hongda Chen
- State Key Laboratory for Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Yong Geng
- The Chinese Academy of Sciences Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoxin Geng
- School of Information Engineering, Minzu University of China, Beijing, China
| |
Collapse
|
9
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Hoar C, McClary-Gutierrez J, Wolfe MK, Bivins A, Bibby K, Silverman AI, McLellan SL. Looking Forward: The Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125002. [PMID: 36580023 PMCID: PMC9799055 DOI: 10.1289/ehp11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In just over 2 years, tracking the COVID-19 pandemic through wastewater surveillance advanced from early reports of successful SARS-CoV-2 RNA detection in untreated wastewater to implementation of programs in at least 60 countries. Early wastewater monitoring efforts primarily originated in research laboratories and are now transitioning into more formal surveillance programs run in commercial and public health laboratories. A major challenge in this progression has been to simultaneously optimize methods and build scientific consensus while implementing surveillance programs, particularly during the rapidly changing landscape of the pandemic. Translating wastewater surveillance results for effective use by public health agencies also remains a key objective for the field. OBJECTIVES We examined the evolution of wastewater surveillance to identify model collaborations and effective partnerships that have created rapid and sustained success. We propose needed areas of research and key roles academic researchers can play in the framework of wastewater surveillance to aid in the transition from early monitoring efforts to more formalized programs within the public health system. DISCUSSION Although wastewater surveillance has rapidly developed as a useful public health tool for tracking COVID-19, there remain technical challenges and open scientific questions that academic researchers are equipped to address. This includes validating methodology and backfilling important knowledge gaps, such as fate and transport of surveillance targets and epidemiological links to wastewater concentrations. Our experience in initiating and implementing wastewater surveillance programs in the United States has allowed us to reflect on key barriers and draw useful lessons on how to promote synergy between different areas of expertise. As wastewater surveillance programs are formalized, the working relationships developed between academic researchers, commercial and public health laboratories, and data users should promote knowledge co-development. We believe active involvement of academic researchers will contribute to building robust surveillance programs that will ultimately provide new insights into population health. https://doi.org/10.1289/EHP11519.
Collapse
Affiliation(s)
- Catherine Hoar
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Jill McClary-Gutierrez
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marlene K. Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Indiana, USA
| | - Andrea I. Silverman
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
11
|
El-Sheikh SM, Sheta SM, Salem SR, Abd-Elzaher MM, Basaleh AS, Labib AA. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal-Organic Framework-Based Optical Biosensor. BIOSENSORS 2022; 12:931. [PMID: 36354440 PMCID: PMC9688191 DOI: 10.3390/bios12110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a formidable obstacle. METHODS In this study, we developed a practical biosensor based on Zn(II) metal-organic framework nanoparticles (Zn-MOFs-NPs). Many spectroscopic and microanalytical tools are used to determine the structure, morphology, and physicochemical properties of the prepared MOF. RESULTS According to the results, Zn-MOFs-NPs are sensitive to PSA, selective to an extremely greater extent, and stable in terms of chemical composition. Furthermore, the Zn-MOFs-NPs did not exhibit any interferences from other common analytes that might cause interference. The detection limit for PSA was calculated and was 0.145 fg/mL throughout a wide linear concentration range (0.1 fg/mL-20 pg/mL). CONCLUSIONS Zn-MOFs-NPs were successfully used as a growing biosensor for the monitoring and measurement of PSA in biological real samples.
Collapse
Affiliation(s)
- Said M. El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo 11421, Egypt
| | - Sheta M. Sheta
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Salem R. Salem
- Department of Biochemistry, Egypt Centre for Research and Regenerative Medicine, Cairo 11887, Egypt
| | | | - Amal S. Basaleh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ammar A. Labib
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
12
|
Rong G, Zheng Y, Yang X, Bao K, Xia F, Ren H, Bian S, Li L, Zhu B, Sawan M. A Closed-Loop Approach to Fight Coronavirus: Early Detection and Subsequent Treatment. BIOSENSORS 2022; 12:900. [PMID: 36291037 PMCID: PMC9599914 DOI: 10.3390/bios12100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The recent COVID-19 pandemic has caused tremendous damage to the social economy and people's health. Some major issues fighting COVID-19 include early and accurate diagnosis and the shortage of ventilator machines for critical patients. In this manuscript, we describe a novel solution to deal with COVID-19: portable biosensing and wearable photoacoustic imaging for early and accurate diagnosis of infection and magnetic neuromodulation or minimally invasive electrical stimulation to replace traditional ventilation. The solution is a closed-loop system in that the three modules are integrated together and form a loop to cover all-phase strategies for fighting COVID-19. The proposed technique can guarantee ubiquitous and onsite detection, and an electrical hypoglossal stimulator can be more effective in helping severe patients and reducing complications caused by ventilators.
Collapse
Affiliation(s)
- Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xi Yang
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kangjian Bao
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Fen Xia
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Huihui Ren
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lan Li
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bowen Zhu
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
13
|
Arano-Martinez JA, Martínez-González CL, Salazar MI, Torres-Torres C. A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning. BIOSENSORS 2022; 12:710. [PMID: 36140093 PMCID: PMC9496380 DOI: 10.3390/bios12090710] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
The ability to interpret information through automatic sensors is one of the most important pillars of modern technology. In particular, the potential of biosensors has been used to evaluate biological information of living organisms, and to detect danger or predict urgent situations in a battlefield, as in the invasion of SARS-CoV-2 in this era. This work is devoted to describing a panoramic overview of optical biosensors that can be improved by the assistance of nonlinear optics and machine learning methods. Optical biosensors have demonstrated their effectiveness in detecting a diverse range of viruses. Specifically, the SARS-CoV-2 virus has generated disturbance all over the world, and biosensors have emerged as a key for providing an analysis based on physical and chemical phenomena. In this perspective, we highlight how multiphoton interactions can be responsible for an enhancement in sensibility exhibited by biosensors. The nonlinear optical effects open up a series of options to expand the applications of optical biosensors. Nonlinearities together with computer tools are suitable for the identification of complex low-dimensional agents. Machine learning methods can approximate functions to reveal patterns in the detection of dynamic objects in the human body and determine viruses, harmful entities, or strange kinetics in cells.
Collapse
Affiliation(s)
- Jose Alberto Arano-Martinez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Claudia Lizbeth Martínez-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Ma Isabel Salazar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| |
Collapse
|
14
|
Point-of-care COVID-19 testing: colorimetric diagnosis using rapid and ultra-sensitive ramified rolling circle amplification. Anal Bioanal Chem 2022; 414:5907-5915. [PMID: 35715585 PMCID: PMC9205388 DOI: 10.1007/s00216-022-04156-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022]
Abstract
In this paper, we report a molecular diagnostic system—combining a colorimetric probe (RHthio-CuSO4) for pyrophosphate sensing and isothermal gene amplification (ramified rolling circle amplification)—that operates with high selectivity and sensitivity for clinical point-of-care diagnosis of SARS-CoV-2. During the polymerase phase of the DNA amplification process, pyrophosphate was released from the nucleotide triphosphate as a side product, which was then sensed by our RHthio-CuSO4 probe with a visible color change. This simple colorimetric diagnostic system allowed highly sensitive (1.13 copies/reaction) detection of clinical SARS-CoV-2 within 1 h, while also displaying high selectivity, as evidenced by its discrimination of two respiratory viral genomes (human rhino virus and respiratory syncytial virus) from that of SARS-CoV-2. All of the reactions in this system were performed at a single temperature, with positive identification being made by the naked eye, without requiring any instrumentation. The high sensitivity and selectivity, short detection time (1 h), simple treatment (one-pot reaction), isothermal amplification, and colorimetric detection together satisfy the requirements for clinical point-of-care detection of SARS-CoV-2. Therefore, we believe that this combination of a colorimetric probe and isothermal amplification will be useful for point-of-care testing to prevent the propagation of COVID-19.
Collapse
|
15
|
El-Sherif DM, Abouzid M, Elzarif MT, Ahmed AA, Albakri A, Alshehri MM. Telehealth and Artificial Intelligence Insights into Healthcare during the COVID-19 Pandemic. Healthcare (Basel) 2022; 10:385. [PMID: 35206998 PMCID: PMC8871559 DOI: 10.3390/healthcare10020385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Soon after the coronavirus disease 2019 pandemic was proclaimed, digital health services were widely adopted to respond to this public health emergency, including comprehensive monitoring technologies, telehealth, creative diagnostic, and therapeutic decision-making methods. The World Health Organization suggested that artificial intelligence might be a valuable way of dealing with the crisis. Artificial intelligence is an essential technology of the fourth industrial revolution that is a critical nonmedical intervention for overcoming the present global health crisis, developing next-generation pandemic preparation, and regaining resilience. While artificial intelligence has much potential, it raises fundamental privacy, transparency, and safety concerns. This study seeks to address these issues and looks forward to an intelligent healthcare future based on best practices and lessons learned by employing telehealth and artificial intelligence during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Dina M. El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mohamed Tarek Elzarif
- Independent Digital Health Researcher and Entrepreneur, CEO Doctor Live Company, Cairo 12655, Egypt;
| | - Alhassan Ali Ahmed
- Doctoral School, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Ashwag Albakri
- Collage of Computer Science and Information Technology, Jazan University, Jizan 45142, Saudi Arabia;
| | - Mohammed M. Alshehri
- Medical Research Center, Jazan University, Jizan 45142, Saudi Arabia;
- Physical Therapy Department, Jazan University, Jizan 82412, Saudi Arabia
| |
Collapse
|
16
|
Abouzid M, El-Sherif DM, Al Naggar Y, Alshehri MM, Alothman S, El-Seedi HR, Trabelsi R, Ibrahim OM, Temraz EH, Buimsaedah A, Aziz IA, Alwan M, Al Hasan NHJ, Ragab HN, Koraiem AM, Ahmed MH, Temraz HH, Madeeh AK, Alshareif MO, Elkhafeefi FS, Badis IE, Abdelslam AE, Ali AAM, Kotni NEI, Amer T. Investigating the current environmental situation in the Middle East and North Africa (MENA) region during the third wave of COVID-19 pandemic: urban vs. rural context. BMC Public Health 2022; 22:177. [PMID: 35081927 PMCID: PMC8790551 DOI: 10.1186/s12889-021-12313-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Coronavirus 2019 (COVID-19) pandemic led to a massive global socio-economic tragedy that has impacted the ecosystem. This paper aims to contextualize urban and rural environmental situations during the COVID-19 pandemic in the Middle East and North Africa (MENA) Region. RESULTS An online survey was conducted, 6770 participants were included in the final analysis, and 64% were females. The majority of the participants were urban citizens (74%). Over 50% of the urban residents significantly (p < 0.001) reported a reduction in noise, gathering in tourist areas, and gathering in malls and restaurants. Concerning the pollutants, most urban and rural areas have reported an increase in masks thrown in streets (69.49% vs. 73.22%, resp.; p = 0.003). Plastic bags and hospital waste also increased significantly with the same p-value of < 0.001 in urban areas compared with rural ones. The multifactorial logistic model for urban resident predictors achieved acceptable discrimination (AUROC = 0.633) according to age, crowdedness, noise and few pollutants. CONCLUSION The COVID-19 pandemic had a beneficial impact on the environment and at the same time, various challenges regarding plastic and medical wastes are rising which requires environmental interventions.
Collapse
Affiliation(s)
- Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznan, Poland
| | - Dina M. El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher weg 8, 06120 Halle (Saale), Germany
| | - Mohammed M. Alshehri
- Physical Therapy Department, Jazan University, Jazan, Southern Region Saudi Arabia
| | - Shaima Alothman
- Lifestyle and Health Research Center, Health Science Research Center, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013 China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, 751 24 Uppsala, SE Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu Education Department, Jiangsu University, Jiangsu, China
| | | | - Osama Mohamed Ibrahim
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
- College of Pharmacy, University of Sharjah, Sharjah, UAE
| | | | | | | | | | | | | | | | - Mareb H. Ahmed
- Mosul Medical College, University of Mosul, Mosul, Iraq
| | | | | | | | | | | | | | | | - Nour El Imene Kotni
- School of Medicine and Health Care, Faculty of Medicine, University of Oran, Oran City, Algeria
| | - Thuraya Amer
- Radiography Techniques Department, Al-Turath University College, Baghdad, Iraq
| |
Collapse
|
17
|
Li M, Zhang G, Boakye A, Chai H, Qu L, Zhang X. Recent Advances in Metal-Organic Framework-Based Electrochemical Biosensing Applications. Front Bioeng Biotechnol 2022; 9:797067. [PMID: 34976986 PMCID: PMC8716788 DOI: 10.3389/fbioe.2021.797067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023] Open
Abstract
In the face of complex environments, considerable effort has been made to accomplish sensitive, accurate and highly-effective detection of target analytes. Given the versatility of metal clusters and ligands, high porosity and large specific surface area, metal–organic framework (MOF) provides researchers with prospective solutions for the construction of biosensing platforms. Combined with the benefits of electrochemistry method such as fast response, low cost and simple operation, the untapped applications of MOF for biosensors are worthy to be exploited. Therefore, this review briefly summarizes the preparation methods of electroactive MOF, including synthesize with electroactive ligands/metal ions, functionalization of MOF with biomolecules and modification for MOF composites. Moreover, recent biosensing applications are highlighted in terms of small biomolecules, biomacromolecules, and pathogenic cells. We conclude with a discussion of future challenges and prospects in the field. It aims to offer researchers inspiration to address the issues appropriately in further investigations.
Collapse
Affiliation(s)
- Mengjie Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao, China
| | - Guangyao Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao, China
| | - Andrews Boakye
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao, China
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.,Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lijun Qu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|