1
|
Aalami Z, Hoseinzadeh M, Hosseini Manesh P, Aalami AH, Es'haghi Z, Darroudi M, Sahebkar A, Hosseini HA. Synthesis, characterization, and photocatalytic activities of green sol-gel ZnO nanoparticles using Abelmoschus esculentus and Salvia officinalis: A comparative study versus co-precipitation-synthesized nanoparticles. Heliyon 2024; 10:e24212. [PMID: 38298703 PMCID: PMC10828648 DOI: 10.1016/j.heliyon.2024.e24212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background The development of green chemistry methods involving plant-based nanoparticle synthesis presents an affordable and eco-friendly approach for wastewater treatment and color removal. This study aimed to synthesize ZnO nanoparticles using the sol-gel method with Salvia officinalis and Abelmoschus esculentus plants, examining their photocatalytic efficiency for organic dye removal. Methods To compare the properties of ZnO nanoparticles, another type of ZnO-NPs was synthesized using the co-precipitation method. The characterization of synthesized nanoparticles was performed using thermogravimetric analysis (TGA-DTG), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), Zeta potential (ZP), field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and UV-Vis spectrophotometry. Results Based on XRD results, the average crystalline size of nanoparticles was calculated using the Debye-Scherer equation for synthesized nanoparticles using the S. officinalis at 22.99 nm and for the A. esculentus at 29.79 nm, and for the co-precipitation method at 18.83 nm. The FE-SEM images showed spherical ZnO nanoparticles. Photocatalytic properties of ZnO-NPs were investigated for remove of methylene blue organic dye in the presence of UV light. The pH 10 was identified as the best pH, which had the highest percentage of color degradation. All three types of nanoparticles were tested by up to 360 min to optimize the dyeing time. For A. esculentus, the highest percentage of color removal occurred in the first 90 min (41.0 %), for S. officinalis nanoparticles between 75 and 90 min (86.9 %), and for chemically synthesized nanoparticles between 30 and 45 min (100 %). Conclusions In conclusion, the best MB dye degradation capacity belonged to co-precipitation ZnO nanoparticles followed by S. officinalis and A. esculentus nanoparticles.
Collapse
Affiliation(s)
- Zakie Aalami
- Chemistry Department, Payame Noor University, 19395-4697, Tehran, Iran
| | - Mohammadsaleh Hoseinzadeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parsa Hosseini Manesh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zarrin Es'haghi
- Chemistry Department, Payame Noor University, 19395-4697, Tehran, Iran
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Kaur N. An innovative outlook on utilization of agro waste in fabrication of functional nanoparticles for industrial and biological applications: A review. Talanta 2024; 267:125114. [PMID: 37683321 DOI: 10.1016/j.talanta.2023.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The burning of an agro waste residue causes air pollution, global warming and lethal effects. To overcome these obstacles, the transformation of agro waste into nanoparticles (NPs) reduces industrial expenses and amplifies environmental sustainability. The concept of green nanotechnology is considered as a versatile tool for the development of valuable products. Although a plethora of literature on the NPs is available, but, still scientists are exploring to design more novel particles possessing unique shape and properties. So, this review basically summarises about the synthesis, characterizations, advantages and outcomes of the various agro waste derived NPs.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India.
| |
Collapse
|
3
|
Wary RR, Narzary M, Brahma BB, Brahma D, Kalita P, Buzar Baruah M. Nanostructural Design of ZnO Using an Agro-Waste Extract for a Sustainable Process and Its Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2023; 6:4645-4661. [PMID: 37938913 DOI: 10.1021/acsabm.3c00412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The use of agro-waste extracts (AWEs) as a sustainable medium for developing cost-effective and ecologically friendly nanomaterials has piqued the interest of current researchers. Herein, waste extracts from papaya barks, banana peels, thumba plants, and snail shells were used for synthesizing ZnO nanostructures via a hydrothermal method, followed by calcination at 400 °C. The crystallinity and pure wurtzite phase formation of ZnO nanostructures were confirmed via X-ray diffraction. ZnO nanostructures with various morphologies such as tight sheet-like, spherical, porous sheet-like, and bracket-shaped, comprising small interconnected particles with a highly catalytically active exposed (0001) facet, were observed via field emission scanning electron microscopy and transmission electron microscopy. The formation mechanism of the various morphologies of the ZnO nanostructures was proposed. Ultraviolet-visible spectra showed different absorption band edges of ZnO nanostructures with a bandgap in the range of 3.17-3.27 eV. Photoluminescence studies showed the presence of various defect states such as oxygen and zinc vacancies and oxygen and zinc interstitials on ZnO nanostructures, which are usually observed in traditionally prepared ZnO. The photocatalytic activity of ZnO nanostructures was evaluated under direct sunlight using rhodamine B (RhB) and Congo red (CR) dyes as probe pollutants. Furthermore, prepared ZnO nanostructures could potentially adsorb anionic dyes (e.g., CR) in the absence of light. Superoxide and hydroxide radicals played a vital role in the photocatalytic activity of ZnO. The photocatalyst could be reused for up to three cycles, indicating its stability. Therefore, this study reports the diverse use of AWEs as cost-effective media for nanomaterial synthesis.
Collapse
Affiliation(s)
- Riu Riu Wary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Mousumi Narzary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Bidhu Bhusan Brahma
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Dulu Brahma
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Pranjal Kalita
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| | - Manasi Buzar Baruah
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar 783370, Assam, India
| |
Collapse
|
4
|
Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S. Exploring the Journey of Zinc Oxide Nanoparticles (ZnO-NPs) toward Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2160. [PMID: 35329610 PMCID: PMC8951444 DOI: 10.3390/ma15062160] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Jalal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (S.S.); (M.J.U.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India;
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (F.I.); (M.R.I.); (A.A.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 400087 Oradea, Romania
| |
Collapse
|