1
|
Jiang Y, Liu J, Wei X, Wang R, Li Y, Liu Y, Xiao P, Cai Y, Shao J, Zhang Z. Biochar leachate reduces primary nitrogen assimilation by inhibiting nitrogen fixation and microbial nitrate assimilation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170608. [PMID: 38307291 DOI: 10.1016/j.scitotenv.2024.170608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Biochar contains biotoxic aromatic compounds, and their influence on nitrogen-fixing cyanobacteria, the critical nitrogen fixer in paddy soil, has never been tested. Here, the physiological, metabolomic, and transcriptomic analyses of Nostoc sp. PCC7120 in response to biochar leachate were performed. The results suggested that biochar leachate inhibited the efficiency of photosynthesis, nitrogen fixation, and nitrate assimilation activities of nitrogen-fixing cyanobacteria. Biochar leachate containing aromatic compounds and odd- and long-chain saturated fatty acids impaired the membrane structure and antenna pigments, damaged the D1 protein of the oxygen evolution complex, and eventually decreased the electron transfer chain activity of photosystem II. Moreover, the nitrogen fixation and nitrate assimilation abilities of nitrogen-fixing cyanobacteria were inhibited by a decrease in photosynthetic productivity. A decrease in iron absorption was another factor limiting nitrogen fixation efficiency. Our study highlights that biochar with relatively high contents of dissolved organic matter poses a risk to primary nitrogen assimilation reduction and ecosystem nitrogen loss. Further evidence of the potential negative effects of biochar leachates on the fixation and assimilation capacity of nitrogen by soil microbes is needed to evaluate the impact of biochar on soil multifunctionality prior to large-scale application.
Collapse
Affiliation(s)
- Yuexi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| | - Ji Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an, Shanxi, 710061, PR China; College of Urban and Environmental Sciences, Central China Normal University, Wuhan, Hubei, 430079, PR China; Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, 12587, Germany
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, PR China
| | - Rumeng Wang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| | - Yanyan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and the Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yixiang Cai
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and the Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China
| | - Jihai Shao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China.
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| |
Collapse
|