1
|
Sharma A, Mannan A, Singh S, Singh TG. A second act for spironolactone: cognitive benefits in renal dysfunction - a critical review. Metab Brain Dis 2025; 40:194. [PMID: 40299184 DOI: 10.1007/s11011-025-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Renal dysfunction or Chronic kidney disease (CKD) are increasingly associated with cognitive deficit and memory impairment, suggesting a crucial kidney-brain axis. This review examines spironolactone's emerging role as a neuroprotective agent in the context of renal dysfunction-induced cognitive impairment. As a selective mineralocorticoid receptor (MR) antagonist, spironolactone demonstrates multifaceted protective mechanisms beyond its well established renoprotective effects. Evidences also suggests that spironolactone attenuates neuroinflammation, mitigates oxidative stress in brain, preserve blood-brain barrier (BBB) integrity and regulates hormonal imbalances associated with renal dysfunction. This review focuses on the reported beneficial effects of spironolactone in various neurodegenerative diseases (NDDs). These mechanisms collectively protect against the neurodegeneration in memory impairment induced by renal dysfunction. The dual action of spironolactone on both renal and cerebral tissues presents a novel therapeutic advantage in addressing this complex pathophysiology. This study elucidates multiple beneficial mechanisms by which spironolactone addresses cognitive impairment associated with renal dysfunction. Spironolactone enhances BBB protection and restores BBB integrity which is often compromised with renal dysfunction. It promotes neuroplasticity (allowing for improved neural adaptation and cognitive function), additionally mediates cerebral blood flow (CBF) ensuring adequate oxygen and nutrient delivery to brain. Spironolactone's anti-inflammatory effects by inhibiting the nuclear factor-kappa B (NF-κB) pathway and modulation of neuregulin1 (NRG1)/v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ERBB4) signaling effectively reduce neuroinflammation that contributes to memory impairment. It also mitigates oxidative stress by targeting NADPH-oxidase (NOX), a major source of reactive oxygen species (ROS) in the central nervous system (CNS). Spironolactone also maintains hormonal balance, particularly regarding aldosterone levels, which become dysregulated in renal dysfunction and negatively impact brain function. These insights provide new possibilities for developing targeted therapies against renal dysfunction-induced memory impairment.
Collapse
Affiliation(s)
- Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Rajpura, Punjab, India.
| |
Collapse
|
2
|
Kakkar C, Sharma V, Mannan A, Gupta G, Singh S, Kumar P, Dua K, Kaur A, Singh S, Dhiman S, Singh TG. Diabetic Cardiomyopathy: An Update on Emerging Pathological Mechanisms. Curr Cardiol Rev 2025; 21:88-107. [PMID: 39501954 PMCID: PMC12060924 DOI: 10.2174/011573403x331870241025094307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Diabetic Cardiomyopathy (DCM) is a notable consequence of diabetes mellitus, distinguished by cardiac dysfunction that occurs separately from coronary artery disease or hypertension. A recent study has revealed an intricate interaction of pathogenic processes that contribute to DCM. Important aspects involve the dysregulation of glucose metabolism, resulting in heightened oxidative stress and impaired mitochondrial function. In addition, persistent high blood sugar levels stimulate inflammatory pathways, which contribute to the development of heart fibrosis and remodelling. Additionally, changes in the way calcium is managed and the presence of insulin resistance are crucial factors in the formation and advancement of DCM. This may be due to the involvement of many molecular mechanistic pathways such as NLRP3, NF-κB, PKC, and MAPK with their downstream associated signaling pathways. Gaining a comprehensive understanding of these newly identified pathogenic pathways is crucial in order to design precise therapy approaches that can enhance the results for individuals suffering from diabetes. In addition, this review offers an in-depth review of not just pathogenic pathways and molecular mechanistic pathways but also diagnostic methods, treatment options, and clinical trials.
Collapse
Affiliation(s)
- Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
| | - Sachin Singh
- Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
| | - Puneet Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
3
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
4
|
Kaur N, Kishore L, Farooq SA, Kajal A, Singh R, Agrawal R, Mannan A, Singh TG. Cucurbita pepo seeds improve peripheral neuropathy in diabetic rats by modulating the inflammation and oxidative stress in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85910-85919. [PMID: 37400700 DOI: 10.1007/s11356-023-28339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cucurbita pepo (C. pepo) is cultivated and used traditionally as vegetable as well as medicine in different parts of the world. The aim of current study was to investigate the potential of C. pepo in attenuation of diabetic neuropathy via using streptozotocin (STZ)-induced diabetes model in male wistar rats. MATERIALS AND METHODS Diabetic neuropathy was induced by administration of STZ; 65 mg/kg, i.p. and Nicotinamide (NAD; 230 mg/kg i.p.) and assessed by measuring thermal hyperalgesia, mechanical hyperalgesia and motor nerve conduction velocity (MNCV) in experimental animals. Treatment with different doses of (100, 200 and 400 mg/kg, p.o.) petroleum ether extract of C. pepo (CPE) and hydroethanolic extract of C. pepo (CHE) was started from the 60th day of STZ/NAD administration and continued upto 90th day. RESULTS CPE and CHE significantly attenuated the behavioural changes including hyperalgesia, allodynia and MNCV linked to diabetic neuropathy. Moreover, the oxidative stress and level of TNF-α, TGF-β and IL-1β was found to be significantly attenuated in experimental animals. CONCLUSION Thus C. pepo might ameliorate the progression of diabetic neuropathy via modulation of chronic hyperglycemia and therefore and have therapeutic potential for treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Navpreet Kaur
- M.M. College of Pharmacy, M.M. (Deemed to Be) University, Mullana-Ambala, Haryana, 133207, India
| | - Lalit Kishore
- Faculty of Health Sciences, University of Ottawa, Montréal, ON, K1H 8L1, Canada
| | - Shah Asma Farooq
- M.M. College of Pharmacy, M.M. (Deemed to Be) University, Mullana-Ambala, Haryana, 133207, India
| | - Anu Kajal
- M.M. College of Pharmacy, M.M. (Deemed to Be) University, Mullana-Ambala, Haryana, 133207, India
| | - Randhir Singh
- College of Pharmacy, JSS Academy of Technical Education, Uttar Pradesh, Noida, 201309, India
| | - Rohini Agrawal
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
5
|
Rather IA, Khan N, Kushwah AS, Surampalli G, Kumar M. Nephroprotective effects of honokiol in a high-fat diet-streptozotocin rat model of diabetic nephropathy. Life Sci 2023; 320:121543. [PMID: 36871934 DOI: 10.1016/j.lfs.2023.121543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
AIMS Diabetic nephropathy (DN) is the foremost basis of end-stage kidney failure implicating endoplasmic reticulum (ER) stress and dysregulation of Rho kinase/Rock pathway. Magnolia plants are used in traditional medicine systems in Southeast Asia owing to bioactive phytoconstituents. Earlier, honokiol (Hon) exhibited therapeutic potential in experimental models of metabolic, renal, and brain disorders. In the present study, we evaluated potential of Hon against DN and possible molecular mechanisms. MAIN METHODS In the existing experiments, high-fat diet (HFD) (17 weeks) and streptozotocin (STZ) (40 mg/kg once) induced DN rats were orally treated with Hon (25, 50, 100 mg/kg) or metformin (150 mg/kg) for 8 weeks. KEY FINDINGS Hon attenuated albuminuria, blood biomarkers (e.g., urea nitrogen, glucose, C-reactive protein, and creatinine) and ameliorated lipid profile, electrolytes levels (Na+/K+), and creatinine clearance against DN. Hon significantly decreased renal oxidative stress and inflammatory biomarkers against DN. Histomorphometry and microscopic analysis revealed nephroprotective effects of Hon marked by a decrease in leukocyte infiltration, renal tissue damage, and urine sediments. RT-qPCR showed that Hon treatment attenuated mRNA expression of transforming growth factor-β1 (TGF-β1), endothelin-1 (ET-1), ER stress markers (GRP78, CHOP, ATF4, and TRB3), and Rock 1/2 in DN rats. Data from ELISA supported a decrease in levels of TGF-β1, ET-1, ER stress markers, and Rock1/2 by Hon. SIGNIFICANCE Hon attenuated hyperglycemia, redox imbalance, and inflammation and improved renal functions in rats. Hon alleviates DN pathogenesis possibly by attenuating ER stress and Rock pathway.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Department of Pharmacology, Swift School of Pharmacy, Rajpura, Patiala, Punjab, India.
| | - Nadeem Khan
- Department of Pharmacology, Swift School of Pharmacy, Rajpura, Patiala, Punjab, India.
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, Punjab, India.
| | | | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Rajpura, Patiala, Punjab, India; Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|