1
|
Picinini-Zambelli J, Garcia ALH, Da Silva J. Emerging pollutants in the aquatic environments: A review of genotoxic impacts. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 795:108519. [PMID: 39577759 DOI: 10.1016/j.mrrev.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Urbanization and industrial growth have negatively impacted water quality, raising concerns about emerging aquatic pollutants. Despite advancements in water treatment, these substances persist, endangering aquatic life and human health. Although research has focused on the physiological effects of these pollutants, their genetic damage potential remains poorly understood. This systematic review aimed to consolidate existing knowledge on the genotoxic potential of emerging aquatic pollutants. A comprehensive search was conducted across major databases, encompassing articles published from 2001 to 2022. The review primarily focused on research articles that evaluated genotoxicity in environmental samples containing emerging pollutants, as well as in vitro studies using various concentrations of these substances. Fourteen articles were included in the review, with pharmaceutical compounds, personal care products, disinfection byproducts, and industrial chemicals being the most extensively investigated classes. Other notable pollutants included metals, cyanotoxins, antiseptics, pesticides, and caffeine. All these pollutants classes were found to cause DNA damage, either in vitro at specific concentrations or in complex environmental mixtures. The comet assay was the most frequently used method, owing to its sensitivity and practicality in assessing DNA damage. For some pollutants, different responses were observed when comparing in vitro and in vivo studies, emphasizing the need for studies employing both approaches. However, the limited number of available articles underscores the necessity for further research on the genotoxic potential of emerging pollutants. More research is required to clarify mutagenicity, DNA repair kinetics, and cumulative effects of pollutants, which are critical for shaping policies and ensuring safe water quality. A greater knowledge about these pollutants will enable better understanding risk mitigation, ultimately protecting public health and ecosystems.
Collapse
Affiliation(s)
- Juliana Picinini-Zambelli
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Av. Farroupilha, 8001, Building 22 (4th floor), Canoas, RS 92425-900, Brazil.
| | - Ana Letícia Hilário Garcia
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Av. Farroupilha, 8001, Building 22 (4th floor), Canoas, RS 92425-900, Brazil; La Salle University (UniLaSalle), Laboratory of Genetic Toxicology, PPGSDH (Postgraduate Program in Health and Human Development), Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil
| | - Juliana Da Silva
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Av. Farroupilha, 8001, Building 22 (4th floor), Canoas, RS 92425-900, Brazil; La Salle University (UniLaSalle), Laboratory of Genetic Toxicology, PPGSDH (Postgraduate Program in Health and Human Development), Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil.
| |
Collapse
|
2
|
Puga A, Moreira MM, Sanromán MA, Pazos MM, Delerue-Matos C. Antidepressants and COVID-19: Increased use, occurrence in water and effects and consequences on aquatic environment. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175993. [PMID: 39244044 DOI: 10.1016/j.scitotenv.2024.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The COVID-19 pandemic changed the consumption of many drugs, among which antidepressants stand out. This review evaluated the frequency of antidepressant use before and after COVID-19. Once the most consumed antidepressants were identified, detecting a variation in the frequency of consumption on the different continents, an overview of their life cycle was carried out, specifying which antidepressants are mostly detected and the places where there is a greater concentration. In addition, the main metabolites of the most used antidepressants were also investigated. A correlation between the most consumed drugs and the most detected was made, emphasizing the lack of information on the occurrence of some of the most consumed antidepressants. Subsequently, studies on the effects on aquatic life were also reviewed, evaluated through different living beings (fish, crustaceans, molluscs, planktonic crustaceans and algae). Likewise, many of the most used antidepressants lack studies on potential adverse effects on aquatic living beings. This review underscores the need for further research, particularly focusing on the life cycle of the most prescribed antidepressants. In particular, it is a priority to know the occurrence and adverse effects in the aquatic environment of the most used antidepressants after the pandemic.
Collapse
Affiliation(s)
- Antón Puga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - M Angeles Sanromán
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta M Pazos
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
3
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
4
|
Cruz Muñoz E, Termopoli V, Orlandi M, Gosetti F. Non-targeted identification of tianeptine photodegradation products in water samples by UHPLC-QTOF MS/MS. CHEMOSPHERE 2024; 361:142534. [PMID: 38849097 DOI: 10.1016/j.chemosphere.2024.142534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
This study aims the characterization of several tianeptine transformation products in ultrapure water by simulated sunlight irradiation. Tianeptine was completely degraded after 106 h of exposition following pseudo-first-order kinetics (half-life time = 12.0 ± 2.4 h). Furthermore, an ultra-high-performance liquid chromatography coupled with a high-resolution quadrupole time-of-flight-mass spectrometry method was developed and fully validated taking into account different method performance parameters for the quantification of tianeptine in river water up to a concentration of 400 pg L-1. Following a non-targeted approach based on mass data-independent acquisition, eight different transformation products not previously reported in the literature were identified and accordingly elucidated, proposing a photodegradation mechanism based on the accurate tandem mass spectrometry information acquired. Irradiation experiments were replicated for a tianeptine solution prepared in a blank river water sample, resulting in the formation of the same transformation products and similar degradation kinetics. In addition, a toxicity assessment of the photoproducts was performed by in silico method, being generally all TPs of comparable toxicity to the precursor except for TP1, and showing a similar persistence in the environment except for TP2 and TP6, while TP4 was the only TP predicted as mutagenic. The developed method was applied for the analysis of four river water samples.
Collapse
Affiliation(s)
- Enmanuel Cruz Muñoz
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Veronica Termopoli
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Orlandi
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; POLARIS Research Center, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; POLARIS Research Center, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy.
| |
Collapse
|
5
|
Zhao J, Gao J, Ma S, Chen X, Wang J. Predicting the potential risks posed by antidepressants as emerging contaminants in fish based on network pharmacological analysis. Toxicol In Vitro 2024; 99:105872. [PMID: 38851602 DOI: 10.1016/j.tiv.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
This study conducted a network pharmacology-based analysis to simultaneously discern a broad spectrum of potential environmental risks and health effects of antidepressants, a common class of pharmaceutical emerging contaminants (PECs) possessing a complex pharmacological profile, and in silico predict the adverse phenotypes potentially occurring in fish associated with exposure to antidepressants and their mixtures under realistic exposure scenarios. Results showed that 24 of the included 39 antidepressants had been detected worldwide in water environment across 50 countries. Using the environmentally realistic exposure scenario for China as an example, the predicted blood concentrations of antidepressant residues that were generated based on the Fish Plasma Model ranged from 37.89 (Alprazolam) to 16,772.05 (Sertraline) ng/L in exposed fish. Hazard-based bioactivity network without regard to concentration data was composed of 148 potential targets and 701 antidepressant-target interactions. After filtering each antidepressant-target interaction node using the predicted drug concentrations in the blood of fish under realistic exposure scenarios in China, an environmental risk-based network was refined and showed that 11 targets, including muscarinic acetylcholine receptor M1, alpha-2B adrenergic receptor, serotonin 2 A receptor, etc. might be modulated by antidepressants at concentrations equal to or below the environmental exposure levels and their mixtures in fish. Environmentally relevant concentrations of antidepressants in water samples from China might perturb the behavior, stress response, phototaxis, and development in exposed fish.
Collapse
Affiliation(s)
- Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sijia Ma
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xintong Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Moro H, Raldúa D, Barata C. Developmental defects in cognition, metabolic and cardiac function following maternal exposures to low environmental levels of selective serotonin re-uptake inhibitors and tributyltin in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170463. [PMID: 38290680 DOI: 10.1016/j.scitotenv.2024.170463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Aquatic organisms are exposed to low concentrations of neuro-active chemicals, many of them acting also as neuroendocrine disruptors that can be hazardous during earlier embryonic stages. The present study aims to assess how exposure early in live to environmental low concentrations of two selective serotonin reuptake inhibitors (SSRIs), fluoxetine and sertraline, and tributyltin (TBT) affected cognitive, metabolic and cardiac responses in the model aquatic crustacean Daphnia magna. To that end, newly brooded females were exposed for an entire reproductive cycle (3-4 days) and the response of collected juveniles in the first, second and third consecutive broods, which were exposed, respectively, as embryos, provisioned and un-provisioned egg stages, was monitored. Pre-exposure to the selected SSRIs during embryonic and egg developmental stages altered the swimming behaviour of D. magna juveniles to light in a similar way reported elsewhere by serotonergic compounds while TBT altered cognition disrupting multiple neurological signalling routes. The studied compounds also altered body size, the amount of storage lipids in lipid droplets, heart rate, oxygen consumption rates and the transcription of related serotonergic, dopaminergic and lipid metabolic genes in new-born individuals, mostly pre-exposed during their embryonic and provisioning egg stages. The obtained cognitive, cardiac and metabolic defects in juveniles developed from exposed sensitive pre-natal stages align with the "Developmental Origins of Health and Disease (DoHAD)" paradigm.
Collapse
Affiliation(s)
- Hugo Moro
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
7
|
Zhang J, Zhang J, Ma T, Shen H, Hong G. Differences in the response of Chlorella pyrenoidosa to three antidepressants and their mixtures in different light-dark start cycles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13501-13511. [PMID: 38261224 DOI: 10.1007/s11356-024-32073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The use of antidepressants is increasing along with the continuing spike in the prevalence of depression worldwide. As a result, more and more antidepressants are entering the water and probably does harm to the aquatic organisms and even human health. Therefore, three antidepressants, including fluoxetine (FLU), citalopram (CIT), and aspirin (APC), were selected to investigate the toxic risks of antidepressants and their mixtures to a freshwater green alga Chlorella pyrenoidosa (C. pyrenoidosa). Due light is critical for the growth of green algae, six different light-dark cycle experiments were constructed to investigate the differences in toxicity and interaction responses of C. pyrenoidosa to antidepressants and their ternary mixture designed by the uniform design ray method. The toxic effects of individual antidepressants and their mixtures on C. pyrenoidosa were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interactions (synergism or antagonism) within mixtures were analyzed by the concentration addition (CA) and the deviation from the CA model (dCA) models. The results showed that the toxicities of the three antidepressants were different, and the order was FLU > APC > CIT. Light-dark cycles obviously affect the toxicity of three antidepressants and their combined toxicity interaction. Toxicity of the three antidepressants increases with the duration of light but decreases with the duration of darkness. The ternary antidepressant mixture exhibits antagonism, and the longer the initial lighting is, the stronger the antagonism. The antagonism of the ternary mixture is also affected by exposure time and mixture components' pi as well as exposure concentration.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China.
| | - Tianyi Ma
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| | - Huiyan Shen
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| | - Guiyun Hong
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, 292 Ziyun Road, Hefei, 230601, China
| |
Collapse
|
8
|
Rajewicz W, Romano D, Schmickl T, Thenius R. Daphnia's phototaxis as an indicator in ecotoxicological studies: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106762. [PMID: 38000135 DOI: 10.1016/j.aquatox.2023.106762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Animal-based sensors have been increasingly applied to many water monitoring systems and ecological studies. One of the staple organisms used as living sensors for such systems is Daphnia. This organism has been extensively studied and, with time, used in many toxicological and pharmaceutical bioassays, often used for exploring the ecology of freshwater communities. One of its behaviours used for evaluating the state of the aquatic environment is phototaxis. A disruption in the predicted behaviour is interpreted as a sign of stress and forms the basis for further investigation. However, phototaxis is a result of complex processes counteracting and interacting with each other. Predator presence, food quality, body pigmentation and other factors can greatly affect the predicted phototactic response, hampering its reliability as a bioindicator. Therefore, a holistic approach and meticulous documentation of the methods are needed for the correct interpretation of this behavioural indicator. In this review, we present the current methods used for studying phototaxis, the factors affecting it and proposed ways to optimise the reliability of the results.
Collapse
Affiliation(s)
| | - Donato Romano
- BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, Pontedera, 56025, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertá 33, Pisa, 56127, Italy
| | - Thomas Schmickl
- University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| | - Ronald Thenius
- University of Graz, Universitätsplatz 2, Graz, 8010, Austria
| |
Collapse
|
9
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
10
|
Zhong J, Liu X, Chen L, Li K, Hu Q, Wu K, Zhou J, Shi Y, Fan H. Simultaneous separation and determination of several chiral antidepressants and their enantiomers in wastewater by online heart-cutting two-dimensional liquid chromatography. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115302. [PMID: 37506440 DOI: 10.1016/j.ecoenv.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
A novel method for simultaneous separation and detection of the racemates and the enantiomers of common chiral antidepressants in wastewater matrix was developed by online heart-cutting two-dimensional liquid chromatography (2D-LC) coupled to solid-phase extraction (SPE). Screening of chiral stationary phases (CSPs) and chromatographic conditions was investigated for complete enantioseparation to be compatible with RP-HPLC in 1st D-LC. Using methanol-0.1 % (v/v) ammonia solution as mobile phase, a 2D-LC system was configured by reversed mode with a combination of C18 column and the serially CPS columns as 2D-LC stationary phases respectively. The target analytes could achieve satisfactory transformation between 2D-LCs with transfer rate of 90.57-98.58 %. By means of freeze-drying and SPE, three antidepressants in wastewater were greatly preconcentrated under the optimized conditions, improving the method performance. The racemates and the enantiomers of mirtazapine, bupropion and fluoxetine exhibited good linearity in the range of 0.10-30.00 ng/mL (R2≥0.9986), and LODs and LOQs ranged in 0.0183-0.0549 ng/mL and 0.0661-0.1831 ng/mL, respectively. By this way, the method was successfully applied to simultaneous determination of the racemates and the enantiomers of mirtazapine, bupropion and fluoxetine in wastewater samples. Among them, three samples contained bupropion at level of 0.401-0.822 ng/mL, and mirtazapine at level of 0.328 and fluoxetine at level of 0.381 ng/mL were detected respectively in the other two samples. The enantiomers were at level of 0.140-0.189 ng/mL for mirtazapine, 0.182-0.419 ng/mL for bupropion and 0.179-0.204 ng/mL for fluoxetine, respectively. The proposed method providing an efficient approach to monitoring chiral drugs and their enantiomers in wastewater, facilitating to pollution assessment of chiral drugs in the environment and regional survey of illicit abuse in drug control.
Collapse
Affiliation(s)
- Jinjian Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Linzhou Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Kan Li
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Qingkun Hu
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Ke Wu
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Jidan Zhou
- Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China
| | - Yuesen Shi
- Anti-Drug Technology Center of Guangdong Province, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Nano Diagnosis for Health Biotech (Guangzhou) Co., Ltd., Guangzhou 510535, China.
| |
Collapse
|
11
|
Zhou J, Zhao Y, Dai J, Zhang K. Environmentally relevant concentrations of antidepressant mirtazapine impair the neurodevelopment of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115335. [PMID: 37567106 DOI: 10.1016/j.ecoenv.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Mirtazapine is a commonly prescribed antidepressant and has been found widespread in aquatic environments. However, its toxicities to aquatic organisms has rarely been explored. Herein, we conducted a comprehensive study on the developmental effects of mirtazapine on early life stages of zebrafish at environmentally relevant concentrations (3.9 ng/L and 43.5 ng/L). Out of the endpoints measured, spontaneous contraction of embryos at 24 h post fertilization (hpf) and hatching rate and heart rate of embryos at 50 hpf and 56 hpf, respectively, were significantly affected. In light-dark transition behavior test, mirtazapine significantly reduced the swimming frequency and swimming speed of embryos at both concentrations of 3.9 ng/L and 43.5 ng/L. Furthermore, the total swimming distances in dark conditions were also significantly reduced. Transcriptomic analysis was further conducted. It demonstrated that the decreased neural activities in embryos may be associated with altered epinephrine and neuregulin signaling. The present results fill a data gap regarding the exposure of fish to mirtazapine at environmentally relevant concentrations and provide new insights into the neurotoxic mechanisms of mirtazapine exposure.
Collapse
Affiliation(s)
- Jie Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
12
|
Yao M, Mu L, Gao Z, Hu X. Persistence of algal toxicity induced by polystyrene nanoplastics at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162853. [PMID: 36924955 DOI: 10.1016/j.scitotenv.2023.162853] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Polystyrene (PS) often found in the ocean is one of the most commonly used plastic polymers in the world and can exist in different particle sizes. In particular, PS degrades relatively faster and widely accumulates at the nanoscale. Therefore, the penetration is strong and it is easy to enter the body and cause adverse effects. However, the persistence or recovery of their toxicity remains largely unclear. Here, we designed two subexperiments (exposure and recovery experiments) and investigated the persistence of the toxicity of polystyrene (PS) NPs at a wide concentration range (0.01-10 mg/L) to diatoms (Phaeodactylum tricornutum). PS-NPs significantly inhibited algal growth and clearly wrinkled the surfaces of cells, membrane permeability was significantly increased, and the steady-state state of cell redox and mitochondrial membrane potential was disturbed. However, in the recovery experiment, the increased membrane permeability was observed to persist, but the induced oxidative damage was reversible, and the absorbed NPs could be excreted. Integrated omics techniques (metabolomics and transcriptomics) revealed that PS-NPs significantly disrupts cell metabolism, including disturbances in fatty acid biosynthesis and enhanced biosynthesis of phenylalanine, tyrosine, and tryptophan. Inhibition of fatty acid, amino acid, energy and carbohydrate metabolism and disturbance of the antioxidant system contribute to the persistence of toxicity. These findings highlight the phenomena and mechanisms of the persistence of phytotoxicity and are critical to the accurate assessment of NPs.
Collapse
Affiliation(s)
- Mingqi Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China; Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
13
|
Identification of Photodegradation Products of Escitalopram in Surface Water by HPLC-MS/MS and Preliminary Characterization of Their Potential Impact on the Environment. SEPARATIONS 2022. [DOI: 10.3390/separations9100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study concerns the photodegradation of the antidepressant escitalopram (ESC), the S-enantiomer of the citalopram raceme, both in ultrapure and surface water, considering the contribution of indirect photolysis through the presence of nitrate and bicarbonate. The effect of nitrate and bicarbonate concentrations was investigated by full factorial design, and only the nitrate concentration resulted in having a significant effect on the degradation. The kinetics of ESC photodegradation is the pseudo-first-order (half-life = 62.4 h in ultrapure water and 48.4 h in lake water). The generation of transformation products (TPs) was monitored through a developed and validated HPLC-MS/MS method. Fourteen TPs were identified in ultrapure water (one of them, at m/z 261, for the first time) and other two TPs at m/z 327 (found for the first time in this study) were identified only in presence of a nitrate. Several TPs were the same as those formed during the photodegradation of citalopram. The photodegradation pathway of ESC and its mechanism of degradation in water is proposed. The method was applied successfully to the analyses of surface water samples, in which a few dozen of ng L−1 of ESC was determined together with the presence of TP2, TP5 and TP12. Finally, a preliminary in silico evaluation of the toxicological profile and environmental behavior of TPs by computational models was carried out; two TPs (TP4 and TP10) were identified as of potential concern, as they were predicted mutagenic by Ames test model.
Collapse
|