1
|
Barroso TLCT, Castro LEN, da Rosa RG, Brackmann R, Goldbeck R, Forster-Carneiro T. Obtaining value-added products from cashew apple bagasse: A sustainable alternative achieved through a hydrothermal process. Food Res Int 2025; 208:116276. [PMID: 40263860 DOI: 10.1016/j.foodres.2025.116276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The processing of cashew peduncles annually generates approximately 4000 tons of cashew apple bagasse, a biomass rich in value-added products. Pressurized liquid extraction (PLE) was employed to extract bioactive compounds using a Box-Behnken design, with temperature, pH, and solid-liquid ratio as the independent variables. The study evaluated pectin yield, total phenolic compounds (TPC), antioxidant activity (FRAP), sugars, and organic acids. Results were compared to a conventional agitation method (90 °C, 2 h, pH 2.0). Under optimized conditions of 120 °C, pH 2.0, and a solid-to-liquid ratio (S/F) of 15, the PLE method achieved a high pectin yield (23.37 % g g-1), surpassing the conventional method (21.40 % g g-1). Optimal sugar extraction was observed at 100 °C, pH 2.0, and S/F of 10, with a recovery of 90.41 mg per gram of cashew apple bagasse. TPC yields were higher at 120 °C, whereas antioxidant activity peaked at 100 °C. Formic acid concentrations were higher in treatments with low sugar recovery, suggesting compound degradation. Notably, the conventional method produced a higher concentration of formic acid, likely due to the extended extraction time. The kinetic study revealed the formation and recovery patterns of bioactive compounds over time. TPC and FRAP were continuously recovered throughout the studied period, while approximately 80 % of the pectin and sugar yields were achieved within the first 15 min of extraction. Morphological and structural analyses highlighted the impact of the extraction process on the cashew apple bagasse and the resulting pectins. The application of pressure-enhanced porosity in the pectin structure improved thermal stability, significantly reducing the material's hemicellulose fraction. The Ecoscale Environmental Assessment scored 89.75 for pectin extraction and 93 for TPC recovery, surpassing other extraction methods reported in the literature. These findings contribute to the valorization of agro-industrial waste and the development of high-value products from cashew apple bagasse, offering significant potential for the processing industry.
Collapse
Affiliation(s)
- Tiago Linhares Cruz Tabosa Barroso
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Luiz Eduardo Nochi Castro
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Rafael Gabriel da Rosa
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Rodrigo Brackmann
- Department of Chemistry, Federal University of Technology - Paraná (UTFPR), Via do Conhecimento, 85503-390 Pato Branco, PR, Brazil
| | - Rosana Goldbeck
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil
| | - Tânia Forster-Carneiro
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Zhou Y, Zhang X, He F, Liu K, Xia NN, Wu Q, Kong F. Starch-based self-assembled three-dimensional network nanostructure materials for sustainable cascade adsorption. Int J Biol Macromol 2024; 277:134355. [PMID: 39089543 DOI: 10.1016/j.ijbiomac.2024.134355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Toward the development of a sustainable utilization strategy for adsorption materials, a starch-based adsorbent starch-chitosan-tannic acid (St-CTS-TA) with a three-dimensional (3D) structure was fabricated in water via electrostatic and hydrogen bonding reactions between St, CTS, and TA without using toxic reducing agents or special instruments. St-CTS-TA demonstrated a high specific surface area of 37 m2/g as well as a mesoporous/macroporous distribution ranging from 30 to 80 nm, which enhanced the mass transfer of adsorbate and the exposure of catechol groups in TA. The Langmuir isotherm adsorption model revealed that the highest adsorption capacities of St-CTS-TA for Fe3+ and Co2+ were 1678.2 and 944.8 mg/g, respectively. Surprisingly, the specific surface area of St-CTS-TA increased from 37 to 87 and 42 m2/g after Fe3+ and Co2+ adsorption, respectively, and the resulting St-CTS-TA-Fe and St-CTS-TA-Co could continuously adsorb basic fuchsin (BF) and rhodamine B (RhB). The adsorption capacities of St-CTS-TA-Fe and St-CTS-TA-Co for BF/RhB were found to be 1854.79/401.19 mg/g and 2229.77/537.49 mg/g, respectively, based on the Langmuir isotherm adsorption model.
Collapse
Affiliation(s)
- Yujun Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fei He
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Nan Nan Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Chen X, Zhang G, Hou F, Zhu J. Highly effective removal of basic fuchsin dye using carboxymethyl konjac glucomannan grafted acrylic acid-acrylamide/montmorillonite composite hydrogel. Int J Biol Macromol 2024; 277:134163. [PMID: 39059536 DOI: 10.1016/j.ijbiomac.2024.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
This study developed a nanocomposite hydrogel, CAM4-MMT, for efficiently removing basic fuchsin dye from water. The hydrogel was prepared by grafting a copolymer of acrylic acid (AA) and acrylamide (AM) onto carboxymethyl konjac glucomannan (CMKGM), and doped with montmorillonite (MMT), exhibited excellent thermal stability, a porous inner structure, large specific surface area (1.407 m2/g), and high swelling capacity (107.3 g/g). The hydrogel achieved a maximum adsorption capacity of 694.1 mg/g and a removal rate of 99.5 %. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption process. Regeneration and reuse tests confirmed that the hydrogel has excellent recyclability. In conclusion, the CAM4-MMT composite hydrogel efficiently removed basic fuchsin from water solutions, offering a new scheme for eliminating basic fuchsin using natural polysaccharides with promising applications.
Collapse
Affiliation(s)
- Xing Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Feifan Hou
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
4
|
Diehl M, Silva LFO, Schnorr C, Netto MS, Bruckmann FS, Dotto GL. Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51920-51931. [PMID: 36820982 DOI: 10.1007/s11356-023-26006-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Herein, the methylene blue (MB) biosorption from the agroindustrial residue (cassava bagasse) is reported. The cassava bagasse residue presented an irregular surface, anionic character, and low specific surface area. The experiments were performed in batch mode. The biosorption behavior was investigated through the experimental variables, initial concentration of MB, pH, and temperature. The maximum biosorption capacity (170.13 mg g-1) reached 328 K and pH 10.0. The equilibrium and kinetics were better fitted by the Sips and general order (R2 ≥ 0.997 and R2adj ≥ 0.996) models, respectively. Furthermore, the thermodynamic study revealed a spontaneous (ΔG0 < 0) and endothermic process. Finally, the results showed cassava bagasse is a potential material for biosorption dyes from the aqueous medium. In addition, the biosorbent has a low aggregate cost and high availability, which contributes to the destination of large amounts of waste and inspires engineering applications.
Collapse
Affiliation(s)
- Matheus Diehl
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Matias S Netto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Franciele S Bruckmann
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
5
|
Sganzerla WG, da Silva MF, Zabot GL, Goldbeck R, Mussatto SI, Forster-Carneiro T. Techno-economic assessment of subcritical water hydrolysis of brewer’s spent grains to recover xylo-oligosaccharides. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Sganzerla WG, Ampese LC, Mussatto SI, Forster-Carneiro T. Subcritical water pretreatment enhanced methane-rich biogas production from the anaerobic digestion of brewer's spent grains. ENVIRONMENTAL TECHNOLOGY 2022:1-19. [PMID: 36510756 DOI: 10.1080/09593330.2022.2157756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
ABSTRACTThis study evaluated the effectiveness of a semi-continuous flow-through subcritical water hydrolysis (SWH) pretreatment of brewer's spent grains (BSG) for subsequent application in the anaerobic digestion (AD) process. BSG pretreatment was conducted at 160 °C and 15 MPa with a flow rate of 10 mL water min-1 and 15 g water g-1 BSG. The results revealed that SWH attacked the hemicellulose structure, releasing arabinose (46.54 mg g-1) and xylose (39.90 mg g-1) sugars, and proteins (34.89 mg g-1). The start-up of anaerobic reactors using pretreated BSG (747.71 L CH4 kg-1 TVS) increased the methane yield compared with the reactor without pretreatment (53.21 L CH4 kg-1 TVS). For the process with pretreatment, the generation of electricity (134 kWh t-1 BSG) and heat (604 MJ t-1) are responsible for the mitigation of 43.90 kg CO2 eq t-1 BSG. The adoption of SWH as an eco-friendly pretreatment of biomass for AD could be a technological route to increase methane-rich biogas and bioenergy production, supporting the circular economy transition by reducing the carbon footprint of the beer industry.
Collapse
Affiliation(s)
| | - Larissa Castro Ampese
- School of Food Engineering (FEA), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
7
|
Hydroxyapatite nanowires-based Janus micro-rods for selective separation of organics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|