1
|
McHenry LC, Schürch R, Council-Troche M, Gross AD, Johnson LE, Ohlinger BD, Couvillon MJ. Sublethal glyphosate exposure reduces honey bee foraging and alters the balance of biogenic amines in the brain. J Exp Biol 2025; 228:jeb250124. [PMID: 40326703 DOI: 10.1242/jeb.250124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
Glyphosate is a broad-spectrum herbicide that inhibits the shikimate pathway, which honey bees (Apis mellifera), a non-target beneficial pollinator, do not endogenously express. Nonetheless, sublethal glyphosate exposure in honey bees has been correlated to impairments in gustation, learning, memory and navigation. While these impacted physiologies underpin honey bee foraging and recruitment, the effects of sublethal glyphosate exposure on these important behaviors remain unclear, and any proximate mechanism of action in the honey bee is poorly understood. We trained cohorts of honey bees from the same hives to forage at one of two artificial feeders offering 1 mol l-1 sucrose solution, either unaltered (N=40) or containing glyphosate at 5 mg acid equivalent (a.e.) l-1 (N=46). We then compared key foraging behaviors and, on a smaller subset of bees, recruitment behaviors. Next, we quantified protein levels of octopamine, tyramine and dopamine, and levels of the amino acid precursor tyrosine in the brains of experimental bees collected 3 days after the exposure. We found that glyphosate treatment bees reduced their foraging by 13.4% (P=0.022), and the brain content of tyramine was modulated by a crossover interaction between glyphosate treatment and the number of feeder visits (P=0.004). Levels of octopamine were significantly correlated with its precursors tyramine (P=0.011) and tyrosine (P=0.018) in glyphosate treatment bees, but not in control bees. Our findings emphasize the critical need to investigate impacts of the world's most-applied herbicide and to elucidate its non-target mechanism of action in insects to create better-informed pollinator protection strategies.
Collapse
Affiliation(s)
- Laura C McHenry
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Roger Schürch
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Aaron D Gross
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Bradley D Ohlinger
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
2
|
Mamboungou J, Fernandes ÉKK, Vieira LG, Rocha TL. Hazardous fipronil insecticide effects on aquatic animals' health: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176334. [PMID: 39317251 DOI: 10.1016/j.scitotenv.2024.176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Fipronil (FIP) is a broad-spectrum and highly efficient insecticide used against several arthropod pests, such as parasitic mites and insect pests affecting both animals and plants. Given its several benefits, FIP is widely used in the agricultural and veterinary medicine fields, but its indiscriminate use can have ecotoxic effects on non-target species. Thus, the current study aimed to summarise and critically analyse FIP's ecotoxicity in aquatic animals. Data referring to bibliometric parameters (publication year and geographical distribution), experimental conditions (field and laboratory, FIP type, animal class, species, habitat, and exposure conditions), and biomarkers (oxidative stress, DNA damage, neurotoxicity, and morphological changes) were summarised and critically analysed. Ecotoxicological studies were mainly conducted with insects, crustaceans, molluscs, and fish. Exposure to pure FIP or FIP-based commercial formulation can induce mortality and have sublethal effects on non-target organisms, such as increased reactive oxygen species (ROS), oxidative damage, genotoxicity (DNA damage), neurotoxicity, and morphological changes. The herein reviewed data have evidenced high median lethal FIP concentration (LC50) in vertebrates in comparison to invertebrates. The current findings confirmed that FIP can have several effects on aquatic organisms, besides suggesting potential ecotoxicological risks posed by this insecticide.
Collapse
Affiliation(s)
- Joseph Mamboungou
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil; Laboratory of Invertebrate Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Éverton Kort Kamp Fernandes
- Laboratory of Invertebrate Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucélia Gonçalves Vieira
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Bogo G, Caringi V, Albertazzi S, Capano V, Colombo R, Dettori A, Guerra I, Lora G, Bortolotti L, Medrzycki P. Residues of agrochemicals in beebread as an indicator of landscape management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174075. [PMID: 38897461 DOI: 10.1016/j.scitotenv.2024.174075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The agricultural intensification represents a major threat to biodiversity, with negative effects on the ecosystem. In particular, habitat loss and degradation, along with pesticide use have been recognised as primary factors contributing to the actual global decline of pollinators. Here we investigated the quality of agroecosystems in the Emilia-Romagna region (Northern Italy) within the national monitoring project BeeNet. We analysed pesticide residues in 100 samples of beebread collected in 25 BeeNet stations in March and June 2021 and 2022. We evaluated diversity and concentration of these chemicals, their risk (TWC) to honey bees, and their correlation with land use. Overall, in 84 % of the samples we found 63 out of 373 different pesticide residues, >90 % of them belonging to fungicides and insecticides. The TWC exceeded the risk threshold in seven samples (TWCmix), mostly due to only one or two compounds. We also found 15 compounds not approved in the EU as plant protection products (PPPs), raising concerns about illegal use or contamination through beeswax recycling. Samples collected in 2021 and in June presented a significantly higher number of active ingredients and TWC than those collected in 2022 and in March. The TWC calculated on single compounds (TWCcom) exceeded the risk threshold in case of four insecticides, namely carbaryl, fipronil, imidacloprid and thiamethoxam (although each detected in only one sample). Finally, both TWC and number of active ingredients were moderately or highly positively correlated with the percentage of area covered by orchards. Considering that we found on average more than five different molecules per sample, and that we ignored potential synergistic effects, the results of this work highlight the alarming situation regarding pesticide treatments and toxicity risk for bees linked to the current agricultural practices, and the need for implementing sustainable and pollinator-friendly strategies.
Collapse
Affiliation(s)
- Gherardo Bogo
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Valeria Caringi
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy.
| | - Sergio Albertazzi
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Vittorio Capano
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Roberto Colombo
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Amanda Dettori
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Irene Guerra
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Giulia Lora
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| | - Piotr Medrzycki
- CREA Research Centre for Agriculture and Environment, via di Corticella 133, 40128 Bologna, Italy
| |
Collapse
|
4
|
Lima YS, de Castro Lippi IC, da Luz Scheffer J, Lunardi JS, Alvarez MVN, Kadri SM, de Oliveira Orsi R. Food contamination with fipronil alters gene expression associated with foraging in Africanized honey bees. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52267-52278. [PMID: 39145909 DOI: 10.1007/s11356-024-34695-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Taking into consideration that bees can be contaminated by pesticides through the ingestion of contaminated floral resources, we can utilize genetic techniques to assess effects that are scarcely observed in behavioral studies. This study aimed to investigate the genetic effects of ingesting lethal and sublethal doses of the insecticide fipronil in foraging honey bees during two periods of acute exposure. Bees were exposed to fipronil through contaminated honey syrup at two dosages (LD50 = 0.19 µg/bee; LD50/100 = 0.0019 µg/bee) and for two durations (1 and 4 h). Following exposure, we measured syrup consumption per bee, analyzed the transcriptome of bee brain tissue, and identified differentially expressed genes (DEGs), categorizing them functionally based on gene ontology (GO). The results revealed a significant genetic response in honey bees after exposure to fipronil, regardless of the dosage used. Fipronil affected various metabolic, transport, and cellular regulation pathways, as well as detoxification processes and xenobiotic substance detection. Additionally, the downregulation of several DEGs belonging to the olfactory-binding protein (OBP) family was observed, suggesting potential physiological alterations in bees that may lead to disoriented behaviors and reduced foraging efficiency.
Collapse
Affiliation(s)
- Yan Souza Lima
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Isabella Cristina de Castro Lippi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jaine da Luz Scheffer
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Juliana Sartori Lunardi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | - Samir Moura Kadri
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Ricardo de Oliveira Orsi
- Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, São Paulo, Brazil.
| |
Collapse
|
5
|
Zhao J, Bai Y, Yang Y, Li X. The impact of aerobics on mental health and stress levels: A visualization analysis of the CiteSpace map. PLoS One 2024; 19:e0300677. [PMID: 38502660 PMCID: PMC10950220 DOI: 10.1371/journal.pone.0300677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
This study aims to integrate research in the field of aerobics and mental health through the visualization analysis method of the CiteSpace map, to clarify the impact of aerobics on mental health and stress levels. Firstly, based on the literature method, pieces of literature related to aerobics and mental health are searched and collected. Secondly, the visualization analysis method of the CiteSpace map is employed to summarize and analyze the contents of the literature, involving statistical analysis of the annual number of publications, analysis of author characteristics, and analysis of publishing institution characteristics. In addition, keyword co-occurrence analysis and keyword cluster analysis are also conducted in related research fields. Among them, the Log-Likelihood Ratio is used in keyword cluster analysis. Finally, the results are analyzed using the visualization analysis method of the CiteSpace map and the statistics-based comprehensive results. The results demonstrate that in the recent 20 years, the average annual number of articles in related fields exceeds 190. The high-yield authors are distributed in economically developed areas, and the cooperation among authors is scattered. In the keyword clustering results, a total of 77 cluster labels are obtained. The Q value of the clustering module is 0.89, and the average clustering profile silhouette (S) value is 0.92, indicating that the clustering structure is significant and the results are reasonable. The aerobics cluster contains the most closely related keywords, covering mental health and stress levels. Data analysis based on existing studies reveals that aerobics has a significant impact on mental health and stress levels. Individuals participating in aerobics show obvious improvement in mental health inventory (MHI) scores (t(100) = 4.32, p<0.05). Individuals participating in aerobics present a remarkable reduction in the questionnaire evaluation of stress levels (t(100) = -3.91, p<0.05). This study's results support aerobics' positive effects on mental health and stress levels.
Collapse
Affiliation(s)
- Jianxin Zhao
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, Hebei, China
| | - Yabing Bai
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, Hebei, China
| | - Yongjing Yang
- School of Accounting and Finance, Changsha Commerce & Tourism College, Changsha, Hunan, China
| | - Xiaolei Li
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, Hebei, China
| |
Collapse
|
6
|
Loos R, Daouk S, Marinov D, Gómez L, Porcel-Rodríguez E, Sanseverino I, Amalric L, Potalivo M, Calabretta E, Ferenčík M, Colzani L, DellaVedova L, Amendola L, Saurini M, Di Girolamo F, Lardy-Fontan S, Sengl M, Kunkel U, Svahn O, Weiss S, De Martin S, Gelao V, Bazzichetto M, Tarábek P, Stipaničev D, Repec S, Zacs D, Ricci M, Golovko O, Flores C, Ramani S, Rebane R, Rodríguez JA, Lettieri T. Summary recommendations on "Analytical methods for substances in the Watch List under the Water Framework Directive". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168707. [PMID: 37992820 DOI: 10.1016/j.scitotenv.2023.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Watch List (WL) is a monitoring program under the European Water Framework Directive (WFD) to obtain high-quality Union-wide monitoring data on potential water pollutants for which scarce monitoring data or data of insufficient quality are available. The main purpose of the WL data collection is to determine if the substances pose a risk to the aquatic environment at EU level and subsequently to decide whether a threshold, the Environmental Quality Standards (EQS) should be set for them and, potentially to be listed as priority substance in the WFD. The first WL was established in 2015 and contained 10 individual or groups of substances while the 4th WL was launched in 2022. The results of monitoring the substances of the first WL showed that some countries had difficulties to reach an analytical Limit of Quantification (LOQ) below or equal to the Predicted No-Effect Concentrations (PNEC) or EQS. The Joint Research Centre (JRC) of the European Commission (EC) organised a series of workshops to support the EU Member States (MS) and their activities under the WFD. Sharing the knowledge among the Member States on the analytical methods is important to deliver good data quality. The outcome and the discussion engaged with the experts are described in this paper, and in addition a literature review of the most important publications on the analysis of 17-alpha-ethinylestradiol (EE2), amoxicillin, ciprofloxacin, metaflumizone, fipronil, metformin, and guanylurea from the last years is presented.
Collapse
Affiliation(s)
- Robert Loos
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | - Livia Gómez
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy
| | | | | | | | | | | | - Martin Ferenčík
- Povodí Labe, státní podnik, Czech Republic; Institute of Environmental and Chemical Engineering, University of Pardubice, Czech Republic
| | - Luisa Colzani
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luisa DellaVedova
- ARPA Lombardia, the Regional Environmental Protection Agency-Lombardy Region, Italy
| | - Luca Amendola
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | - Mariateresa Saurini
- ARPA Lazio, the Regional Environmental Protection Agency-Lazio Region, Italy
| | | | - Sophie Lardy-Fontan
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), France
| | | | - Uwe Kunkel
- Bavarian Environment Agency (LfU), Germany
| | - Ola Svahn
- Kristianstad University, MoLab, Sweden
| | - Stefan Weiss
- Federal Environment Agency, Umweltbundesamt (GmbH), Austria
| | - Stefano De Martin
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Vito Gelao
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Michele Bazzichetto
- ARPA FVG, the Regional Environmental Protection Agency-Friuli Venezia Giulia Region, Italy
| | - Peter Tarábek
- Water Research Institute (VÚVH), National Water Reference Laboratory, Slovakia
| | | | - Siniša Repec
- Josip Juraj Strossmayer Water Institute, Central Water Laboratory, Croatia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Latvia
| | - Marina Ricci
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Sweden
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | | | - Riin Rebane
- Estonian Environmental Research Centre, Estonia
| | - Juan Alández Rodríguez
- Área de Vigilancia y Control de Calidad de las Aguas, Ministerio para la Transición Ecológica y el Reto Demográfico, Spain
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Ispra, VA, Italy.
| |
Collapse
|
7
|
Hirashima S, Amimoto T, Iwamoto Y, Takeda K. Photodegradation of the insecticide fipronil in aquatic environments: photo-dechlorination processes and products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89877-89888. [PMID: 37460889 DOI: 10.1007/s11356-023-28571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
Fipronil (FIP) is a phenylpyrazole insecticide that, along with neonicotinoid insecticides, is regularly used worldwide. Photodegradation of FIP in aqueous systems is thought mainly to involve the reaction of desulfinylation to give fipronil desulfinyl (FIP-desulfinyl); however, little is known about further degradation reactions. We investigated FIP photodegradation by analyzing photodegradation products by liquid chromatography and liquid chromatography high-resolution tandem mass spectrometry using an Orbitrap instrument. A wide range of products, including dechlorinated compounds, was detected, and the structures were identified. FIP-desulfinyl has previously been found to be an important and persistent FIP photodegradation product; however, we also found that FIP-desulfinyl was photochemically decomposed to a didechlorinated product via a monodechlorinated product. The main photodegradation pathway was probably similar to that of ethiprole, which has a similar skeleton. The photodegradation rate constant was 22.6 times lower for FIP-desulfinyl (0.00372 min-1) than FIP (0.0839 min-1). The photodegradation rate constant was lower for the newly found didechlorinated product (0.001 min-1 or below) than FIP-desulfinyl, suggesting that the product is persistent in aquatic environments and could be an important indicator of long-term FIP contamination.
Collapse
Affiliation(s)
- Soichiro Hirashima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | - Tomoko Amimoto
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Yoko Iwamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | - Kazuhiko Takeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan.
- Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
8
|
Biodegradation of the Pesticides Bifenthrin and Fipronil by Bacillus Isolated from Orange Leaves. Appl Biochem Biotechnol 2022; 195:3295-3310. [PMID: 36585549 DOI: 10.1007/s12010-022-04294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/01/2023]
Abstract
The pyrethroid bifenthrin and the phenylpyrazole fipronil are widely employed insecticides, and their extensive use became an environmental issue. Therefore, this study evaluated their biodegradation employing bacterial strains of Bacillus species isolated from leaves of orange trees, aiming at new biocatalysts with high efficiency for use singly and in consortium. Experiments were performed in liquid culture medium at controlled temperature and stirring (32 °C, 130 rpm). After 5 days, residual quantification by HPLC-UV/Vis showed that Bacillus amyloliquefaciens RFD1C presented 93% biodegradation of fipronil (10.0 mg.L-1 initial concentration) and UPLC-HRMS analyses identified the metabolite fipronil sulfone. Moreover, Bacillus pseudomycoides 3RF2C showed a biodegradation of 88% bifenthrin (30.0 mg.L-1 initial concentration). A consortium composed of the 8 isolated strains biodegraded 81% fipronil and 51% bifenthrin, showing that this approach did not promote better results than the most efficient strains employed singly, although high rates of biodegradation were observed. In conclusion, bacteria of the Bacillus genus isolated from leaves of citrus biodegraded these pesticides widely applied to crops, showing the importance of the plant microbiome for degradation of toxic xenobiotics.
Collapse
|
9
|
Guima SES, Piubeli F, Bonfá MRL, Pereira RM. New Insights into the Effect of Fipronil on the Soil Bacterial Community. Microorganisms 2022; 11:microorganisms11010052. [PMID: 36677344 PMCID: PMC9862053 DOI: 10.3390/microorganisms11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Fipronil is a broad-spectrum insecticide with remarkable efficacy that is widely used to control insect pests around the world. However, its extensive use has led to increasing soil and water contamination. This fact is of concern and makes it necessary to evaluate the risk of undesirable effects on non-target microorganisms, such as the microbial community in water and/or soil. Studies using the metagenomic approach to assess the effects of fipronil on soil microbial communities are scarce. In this context, the present study was conducted to identify microorganisms that can biodegrade fipronil and that could be of great environmental interest. For this purpose, the targeted metabarcoding approach was performed in soil microcosms under two environmental conditions: fipronil exposure and control (without fipronil). After a 35-day soil microcosm period, the 16S ribosomal RNA (rRNA) gene of all samples was sequenced using the ion torrent personal genome machine (PGM) platform. Our study showed the presence of Proteobacteria, Actinobacteria, and Firmicutes in all of the samples; however, the presence of fipronil in the soil samples resulted in a significant increase in the concentration of bacteria from these phyla. The statistical results indicate that some bacterial genera benefited from soil exposure to fipronil, as in the case of bacteria from the genus Thalassobacillus, while others were affected, as in the case of bacteria from the genus Streptomyces. Overall, the results of this study provide a potential contribution of fipronil-degrading bacteria.
Collapse
Affiliation(s)
- Suzana Eiko Sato Guima
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Sao Paulo 05508000, Brazil
| | - Francine Piubeli
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Maricy Raquel Lindenbah Bonfá
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados 79804970, Brazil
| | - Rodrigo Matheus Pereira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados (UFGD), Dourados 79804970, Brazil
- Correspondence:
| |
Collapse
|
10
|
Ren J, Liu Z, Li S, Zhu F, Li L, Zhao Y, Chen D, Zhou Y, Wu Y. Occurrence, fate, and probabilistic risk assessment of fipronil residues in Chinese tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|