1
|
Rahman MH, Siddique AB, Zihadi MAH, Soheb Ahmed SM, Sumon MSH, Ahmed S. Prevalence and molecular characterization of multi-drug and extreme drug resistant Escherichia coli in companion animals in Bangladesh. Sci Rep 2025; 15:16419. [PMID: 40355572 PMCID: PMC12069689 DOI: 10.1038/s41598-025-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
The study aimed to investigate multi-drug resistant (MDR) Escherichia coli (E. coli) in companion animals in Bangladesh, with a focus on the resistance profiles of isolates from non-food-producing animals. In 2023, the studied samples were from cats, dogs, and environmental sources linked with companion animal hospitals in Dhaka city, Bangladesh. E. coli was isolated using standard techniques and its antimicrobial resistance (AMR) was assessed against 23 antibiotics following the CLSI protocols. Metallo-beta-lactamase genes (blaNDM-1 and blaNDM-5) and mobile genetic elements (class 1 integron) were detected by multiplex PCR. The overall prevalence of E. coli was 70%, 76% in cats, 65.71% in dogs, and 65.71% in the environmental samples. Cefuroxime exhibited the highest resistance at 25%, while imipenem and nitrofurantoin showed the highest sensitivity at 100%, followed by ceftazidime at 95%. MDR strains made up 38.10%, while 11.90% were extremely drug-resistant (XDR). Additionally, 29% of E. coli were extended-spectrum beta-lactamase (ESBL) producers. The prevalence and association among class 1 integron and the resistant genes including blaNDM-1 and blaNDM-5 were also notable. This highlights the complex AMR challenges in these settings, including the presence of class 1 integron-a key element involved in capturing and transferring antimicrobial resistance genes.
Collapse
Affiliation(s)
- Md Hafizur Rahman
- AMR Reference Laboratory (Research), Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh.
| | - Abu Bakkar Siddique
- AMR Reference Laboratory (Research), Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md Aseif Hossain Zihadi
- Sheep Production Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh
| | - S M Soheb Ahmed
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh
| | - Md Sazzad Hossain Sumon
- AMR Reference Laboratory (Research), Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh
| | - Shihab Ahmed
- AMR Reference Laboratory (Research), Bangladesh Livestock Research Institute, Savar, Dhaka-1341, Bangladesh
| |
Collapse
|
2
|
Kong M, Zhang Y, Ma Y, Fang H, Wang W, Shi G, Yan Y, Zhang S. Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments. ENVIRONMENTAL RESEARCH 2024; 244:118005. [PMID: 38135101 DOI: 10.1016/j.envres.2023.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Emerging contaminants, including antibiotics, antibiotic-resistant bacteria (ARB), and extracellular antibiotic resistance genes (eARGs), have been detected in large numbers in the aquatic environment. The effects of emerging contaminants on bacterial communities in marine sediments are not well studied. In this study, the effects of emerging contaminants (antibiotics, ARB, and eARGs) on the variations of bacterial populations in marine sediments of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea were investigated. The results showed that the abundance of the host bacterial phylum Probacteria in the marine sediments of the Bohai Sea was the lowest among the four seas after exposure to different antibiotics, ARB, and eARGs. The inputs of exogenous antibiotics and resistance genes significantly affected the community function, resulting in significant differences in community abundance at the genus level. The abundance of Halomonas, Sulfitobacter, and Alcanivorax in the four sea areas displayed noteworthy differences in response to the addition of exogenous antibiotics and eARGs. These findings contribute to a more comprehensive understanding of the intricate interplay between emerging contaminants and the dynamics of bacterial communities in natural ecosystems.
Collapse
Affiliation(s)
- Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Ma
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wanzhong Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Gaoling Shi
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yan Yan
- Centre for Ecology Environment Monitoring and Scientific research, SongLiao River Basin Ecology and Environment Adiministration, Ministry of Ecology and Environment, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
3
|
He X, Lu Y, Cai T, Fu X, Song L, Wang M, Zeng Q, Zeng Q, Li M, Hua Y, Wu X, Wang L. Selective degradation of antibiotic in a novel Cu 7S 4/peroxydisulfate system via heterogeneous Cu(III) formation: Performance, mechanism and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131842. [PMID: 37329600 DOI: 10.1016/j.jhazmat.2023.131842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Efficient degradation of antibiotic by peroxydisulfate (PDS)-based advanced oxidation processes in complex water environment is challenging due to the interference of impurities and the low activation efficiency of PDS caused by its symmetric structure. Herein, a novel Cu7S4/PDS system was developed, which can selectively remove tetracycline hydrochloride (TC) without interference of inorganic ions (e.g., Cl- and HCO3-) and natural organic matter (e.g., humic acid). The results of quenching and probe experiments demonstrated that surface high-valent copper species (Cu(III)), rather than radicals and 1O2, are main active species for TC degradation. Cu(III) can be generated via Cu(I)/O2 and Cu(II)/Cu(I)/PDS systems and the S species on the surface of Cu7S4 promotes the cycle of Cu(II)/Cu(I) and Cu(III)/Cu(II), resulting in continuous generation of Cu(III). In addition, the degradation pathways of TC were proposed based on product analysis and DFT theory calculations. The acute toxicity, developmental toxicity and mutagenicity of treated TC were significantly reduced according to the results of toxicity estimation software tool. This study shows a promising Cu7S4/PDS system for the degradation and detoxication of antibiotic in complex water environment, while also providing a comprehensive understanding of PDS activation by Cu7S4 to generate active Cu(III) species.
Collapse
Affiliation(s)
- Xieping He
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Yining Lu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Tao Cai
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Xijun Fu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Lu Song
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Minjie Wang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Qingyi Zeng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Qingming Zeng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Mi Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Yilong Hua
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
4
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|