1
|
Aktar S, Islam ARMT, Mia MY, Jannat JN, Islam MS, Siddique MAB, Masud MAA, Idris AM, Pal SC, Senapathi V. Assessing metal(loid)s-Induced long-term spatiotemporal health risks in Coastal Regions, Bay of Bengal: A chemometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33141-z. [PMID: 38625466 DOI: 10.1007/s11356-024-33141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.
Collapse
Affiliation(s)
- Shammi Aktar
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Jannatun Nahar Jannat
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| |
Collapse
|
2
|
Jannat JN, Islam ARMT, Mia MY, Pal SC, Biswas T, Jion MMMF, Islam MS, Siddique MAB, Idris AM, Khan R, Islam A, Kormoker T, Senapathi V. Using unsupervised machine learning models to drive groundwater chemistry and associated health risks in Indo-Bangla Sundarban region. CHEMOSPHERE 2024; 351:141217. [PMID: 38246495 DOI: 10.1016/j.chemosphere.2024.141217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/17/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Groundwater is an essential resource in the Sundarban regions of India and Bangladesh, but its quality is deteriorating due to anthropogenic impacts. However, the integrated factors affecting groundwater chemistry, source distribution, and health risk are poorly understood along the Indo-Bangla coastal border. The goal of this study is to assess groundwater chemistry, associated driving factors, source contributions, and potential non-carcinogenic health risks (PN-CHR) using unsupervised machine learning models such as a self-organizing map (SOM), positive matrix factorization (PMF), ion ratios, and Monte Carlo simulation. For the Sundarban part of Bangladesh, the SOM clustering approach yielded six clusters, while it yielded five for the Indian Sundarbans. The SOM results showed high correlations among Ca2+, Mg2+, and K+, indicating a common origin. In the Bangladesh Sundarbans, mixed water predominated in all clusters except for cluster 3, whereas in the Indian Sundarbans, Cl--Na+ and mixed water dominated in clusters 1 and 2, and both water types dominated the remaining clusters. Coupling of SOM, PMF, and ionic ratios identified rock weathering as a driving factor for groundwater chemistry. Clusters 1 and 3 were found to be influenced by mineral dissolution and geogenic inputs (overall contribution of 47.7%), while agricultural and industrial effluents dominated clusters 4 and 5 (contribution of 52.7%) in the Bangladesh Sundarbans. Industrial effluents and agricultural activities were associated with clusters 3, 4, and 5 (contributions of 29.5% and 25.4%, respectively) and geogenic sources (contributions of 23 and 22.1% in clusters 1 and 2) in Indian Sundarbans. The probabilistic health risk assessment showed that NO3- poses a higher PN-CHR risk to human health than F- and As, and that potential risk to children is more evident in the Bangladesh Sundarban area than in the Indian Sundarbans. Local authorities must take urgent action to control NO3- emissions in the Indo-Bangla Sundarbans region.
Collapse
Affiliation(s)
- Jannatun Nahar Jannat
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | - Tanmoy Biswas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | | | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.
| | - Rahat Khan
- Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka 1349, Bangladesh.
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gora Chand Road, Kolkata-700 014, India.
| | - Tapos Kormoker
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong.
| | | |
Collapse
|
3
|
Mia MY, Haque ME, Islam ARMT, Jannat JN, Jion MMMF, Islam MS, Siddique MAB, Idris AM, Senapathi V, Talukdar S, Rahman A. Analysis of self-organizing maps and explainable artificial intelligence to identify hydrochemical factors that drive drinking water quality in Haor region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166927. [PMID: 37704149 DOI: 10.1016/j.scitotenv.2023.166927] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Water contamination undermines human survival and economic growth. Water resource protection and management require knowledge of water hydrochemistry and drinking water quality characteristics, mechanisms, and factors. Self-organizing maps (SOM) have been developed using quantization and topographic error approaches to cluster hydrochemistry datasets. The Piper diagram, saturation index (SI), and cation exchange method were used to determine the driving mechanism of hydrochemistry in both surface and groundwater, while the Gibbs diagram was used for surface water. In addition, redundancy analysis (RDA) and a generalized linear model (GLM) were used to determine the key drinking water quality parameters in the study area. Additionally, the study aimed to utilize Explainable Artificial Intelligence (XAI) techniques to gain insights into the relative importance and impact of different parameters on the entropy water quality index (EWQI). The SOM results showed that thirty neurons generated the hydrochemical properties of water and were organized into four clusters. The Piper diagram showed that the primary hydrochemical facies were HCO3--Ca2+ (cluster 4), Cl---Na+ (all clusters), and mixed (clusters 1 and 4). Results from SI and cation exchange show that demineralization and ion exchange are the driving mechanisms of water hydrochemistry. About 45 % of the studied samples are classified as "medium quality"," that could be suitable as drinking water with further refinement. Cl- may pose increased non-carcinogenic risk to adults, with children at double risk. Cluster 4 water is low-risk, supporting EWQI findings. The RDA and GLM observations agree in that Ca2+, Mg2+, Na+, Cl- and HCO3- all have a positive and significant effect on EWQI, with the exception of K+. TDS, EC, Na+, and Ca2+ have been identified as influencing factors based on bagging-based XAI analysis at global and local levels. The analysis also addressed the importance of SO4, HCO3, Cl, Mg2+, K+, and pH at specific locations.
Collapse
Affiliation(s)
- Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Emdadul Haque
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Jannatun Nahar Jannat
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | | | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | | | - Swapan Talukdar
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Atiqur Rahman
- Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
4
|
Zihad SMRA, Islam ARMT, Siddique MAB, Mia MY, Islam MS, Islam MA, Bari ABMM, Bodrud-Doza M, Yakout SM, Senapathi V, Chatterjee S. Fuzzy logic, geostatistics, and multiple linear models to evaluate irrigation metrics and their influencing factors in a drought-prone agricultural region. ENVIRONMENTAL RESEARCH 2023; 234:116509. [PMID: 37399988 DOI: 10.1016/j.envres.2023.116509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
The quality of water used for irrigation is one of the major threats to maintaining the long-term sustainability of agricultural practices. Although some studies have addressed the suitability of irrigation water in different parts of Bangladesh, the irrigation water quality in the drought-prone region has yet to be thoroughly studied using integrated novel approaches. This study aims to assess the suitability of irrigation water in the drought-prone agricultural region of Bangladesh using traditional irrigation metrics such as sodium percentage (NA%), magnesium adsorption ratio (MAR), Kelley's ratio (KR), sodium adsorption ratio (SAR), total hardness (TH), permeability index (PI), and soluble sodium percentage (SSP), along with novel irrigation indices such as irrigation water quality index (IWQI) and fuzzy irrigation water quality index (FIWQI). Thirty-eight water samples were taken from tube wells, river systems, streamlets, and canals in agricultural areas, then analyzed for cations and anions. The multiple linear regression model predicted that SAR (0.66), KR (0.74), and PI (0.84) were the primary important elements influencing electrical conductivity (EC). Based on the IWQI, all water samples fall into the "suitable" category for irrigation. The FIWQI suggests that 75% of the groundwater and 100% of the surface water samples are excellent for irrigation. The semivariogram model indicates that most irrigation metrics have moderate to low spatial dependence, suggesting strong agricultural and rural influence. Redundancy analysis shows that Na+, Ca2+, Cl-, K+, and HCO3- in water increase with decreasing temperature. Surface water and some groundwater in the southwestern and southeastern parts are suitable for irrigation. The northern and central parts are less suitable for agriculture because of elevated K+ and Mg2+ levels. This study determines irrigation metrics for regional water management and pinpoints suitable areas in the drought-prone region, which provides a comprehensive understanding of sustainable water management and actionable steps for stakeholders and decision-makers.
Collapse
Affiliation(s)
- S M Rabbi Al Zihad
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh.
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh.
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh.
| | - Md Aminul Islam
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh.
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Md Bodrud-Doza
- Department of Geography, Environment & Geomatics, University of Guelph, ON | N1G 2W1, Canada.
| | - Sobhy M Yakout
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Sumanta Chatterjee
- USDA-ARS Hydrology and Remote Sensing Laboratory, BARC-West, Beltsville, MD 20705, USA; ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India.
| |
Collapse
|
5
|
Hassan HB, Moniruzzaman M, Majumder RK, Ahmed F, Quaiyum Bhuiyan MA, Ahsan MA, Al-Asad H. Impacts of seasonal variations and wastewater discharge on river quality and associated human health risks: A case of northwest Dhaka, Bangladesh. Heliyon 2023; 9:e18171. [PMID: 37519722 PMCID: PMC10372231 DOI: 10.1016/j.heliyon.2023.e18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Surface water pollution caused by the discharge of effluents from industrial estates has become a major concern for Dhaka (Bangladesh). This study aims to have a concise look at the severe river water pollution, mainly from effluents discharged from the tannery village. Effluent samples were collected from five ejected points, including the central effluent treatment plant (CETP), twenty adjacent river water, and two pond water nearby Hemayetpur, Savar. Thirty-one parameters have been observed at these sampling points for three seasons, from April 2021 to January 2022. The results obtained from water quality indices, i.e., water quality index (WQI), entropy water quality index (EWQI), and irrigation water quality index (IWQI), show that most studied surface water samples ranked "unsuitable" for consumption, irrigation, and anthropogenic purposes. The highest health risk was observed downstream of Hemayetpur city at the Savar CETP discharge site, indicating higher levels of heavy metal in the river water following the tannery village. Carcinogenic and non-carcinogenic human health risks could be triggered mainly by water consumption as concentrations of arsenic (As), chromium (Cr), nickel (Ni), and lead (Pb) exceeded the upper benchmark of 1 × 10-4 for adults and children. The results of the carcinogenic risk assessment revealed that children were more vulnerable to health hazards, and quick corrective action is required to control the increased levels of heavy metals at all sample locations. Therefore, through bioaccumulation, human health and the environment are affected in these areas. Using river water for consumption, household work, or even irrigation purposes is not advisable. This study's result highlighted that properly implementing compatible policies and programs is required to improve effluent treatment methods and provide biodegradability to the Dhaleshwari River.
Collapse
Affiliation(s)
- Hazzaz Bin Hassan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Md. Moniruzzaman
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Ratan Kumar Majumder
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Fowzia Ahmed
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Mirpur-12, Cantonment, Dhaka, 1216, Bangladesh
| | - Md. Abdul Quaiyum Bhuiyan
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Md. Ariful Ahsan
- Isotope Hydrology Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Hafiz Al-Asad
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
6
|
Mia MY, Islam ARMT, Jannat JN, Jion MMMF, Sarker A, Tokatli C, Siddique MAB, Ibrahim SM, Senapathi V. Identifying factors affecting irrigation metrics in the Haor basin using integrated Shannon's entropy, fuzzy logic and automatic linear model. ENVIRONMENTAL RESEARCH 2023; 226:115688. [PMID: 36931377 DOI: 10.1016/j.envres.2023.115688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The sustainability of agricultural practices is seriously threatened by the quality of water used for irrigation. This paper aims to evaluate the suitability of irrigation water and identify the region suitable for agricultural use in the Haor basin of Bangladesh using conventional irrigation indices such as sodium adsorption ratio (SAR), percent sodium (Na%), magnesium hazard ratio (MHR), permeability index (PI), and Kelly's ratio (KR), as well as novel irrigation indices such as, Shannon's entropy index for irrigation water quality (EWQ) and fuzzy logic index for irrigation water quality (FIWQI). The main influences of groundwater and surface water parameters on irrigation indices were predicted using automatic linear modeling (ALM). Forty water samples were collected from shallow tube wells, rivers, canals, ponds, and drainage systems within agricultural land sampled and analyzed for cations and anions. SAR and KR show that 52.5% and 60% of the samples exceeded the allowable level, respectively, indicating that they were unsuitable for irrigation. According to EWQI, about 55% of the analyzed samples were of good quality, while 45% were of medium quality. ALM predicted that KR (0.98), Na% (0.87), and MHR (0.14) were the main significant factors affecting SAR and KR. ALM shows that elevated sodium, magnesium, and calcium are the most important factors affecting irrigation water suitability. The EWQI and FIWQI integrated models showed that water from nearly 30% of the sampling sites would need treatment before use. A new suitability map created by overlaying all parameters showed that surface water and some groundwater in the western and southwestern portions are suitable for agriculture. The north-central part is unsuitable for irrigation due to excessive sodium and magnesium levels. This paper will highlight the irrigation pattern for regional water resource use, identify new suitable regions, and improve sustainable agricultural practices in the Haor basin.
Collapse
Affiliation(s)
- Md Yousuf Mia
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh.
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Jannatun Nahar Jannat
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh.
| | | | - Aniruddha Sarker
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea.
| | - Cem Tokatli
- Trakya University, Laboratory Technology Program, Ipsala, Edirne, Turkiye.
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | | |
Collapse
|
7
|
Jawad-Ul-Haque, Siddique MAB, Islam MS, Ali MM, Tokatli C, Islam A, Pal SC, Idris AM, Malafaia G, Islam ARMT. Effects of COVID-19 era on a subtropical river basin in Bangladesh: Heavy metal(loid)s distribution, sources and probable human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159383. [PMID: 36240937 PMCID: PMC9551124 DOI: 10.1016/j.scitotenv.2022.159383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2023]
Abstract
The COVID-19 era has profoundly affected everyday human life, the environment, and freshwater ecosystems worldwide. Despite the numerous influences, a strict COVID-19 lockdown might improve the surface water quality and thus provide an unprecedented opportunity to restore the degraded freshwater resource. Therefore, we intend to investigate the spatiotemporal water quality, sources, and preliminary health risks of heavy metal(loid)s in the Karatoya River basin (KRB), a tropical urban river in Bangladesh. Seventy water samples were collected from 35 stations in KRB in 2019 and 2022 during the dry season. The results showed that the concentrations of Ni, Cu, Zn, Pb, Cd, and Cr were significantly reduced by 89.3-99.7 % during the post-lockdown period (p < 0.05). However, pH, Fe, Mn, and As concentrations increased due to the rise of urban waste and the usage of disinfectants during the post-lockdown phase. In the post-lockdown phase, the heavy metal pollution index, heavy metal evaluation index, and Nemerow's pollution index values lessened by 8.58 %, 42.86 %, and 22.86 %, respectively. Besides, the irrigation water quality indices also improved by 59 %-62 %. The total hazard index values increased by 24 % (children) and 22 % (adults) due to the rise in Mn and As concentrations during the lockdown. In comparison, total carcinogenic risk values were reduced by 54 % (children) and 53 % (adults) in the post-lockdown. We found no significant changes in river flow, rainfall, or land cover near the river from the pre to post-lockdown phase. The results of semivariogram models have demonstrated that most attributes have weak spatial dependence, indicating restricted industrial and agricultural effluents during the lockdown, significantly improving river water quality. Our study confirms that the lockdown provides a unique opportunity for the remarkable improvement of degraded freshwater resources. Long-term management policies and regular monitoring should reduce river pollution and clean surface water.
Collapse
Affiliation(s)
- Jawad-Ul-Haque
- Department of Disaster Management, Begum Bekeya University, Rangpur 5400, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Cem Tokatli
- Trakya University, Laboratory Technology Department, İpsala, Edirne,Turkey
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata 700 014, West Bengal, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Abubakar M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | | |
Collapse
|
8
|
Corrosion process assessment using a novel type of coupon installation. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2022. [DOI: 10.2478/pjct-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
The main aim of this experimental study is to test the novel type of coupon installation. This set-up was used to carry out the corrosion process under aggressive conditions. Moreover, the effect of corrosion inhibitors on the scale-forming tendency was evaluated. The corrosive conditions were defined by using the Langelier Saturation Index (this index is an approximate indicator of the degree of saturation of CaCO3 in water) and the Ryznar stability index (this index is allowed to determine if the liquid sample is aggressive or not). Additionally, the inductively coupled plasma optical emission spectroscopy analysis was used to obtain the iron and calcium ions concentrations in the liquid samples from the tested coupon installation. The corrosion process for the established conditions was also described using the corrosion rate of the tested coupons. The obtained investigation contributes significantly by developing the novel coupon installation and demonstrating the procedure for testing the corrosion process with the application of coupons. This setup and method might be successfully applied for accelerated laboratory tests.
Collapse
|
9
|
Analysis of the Corrosion Process with the Application of the Novel Type of Coupon Installation. Processes (Basel) 2022. [DOI: 10.3390/pr10122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The corrosion process leads to high power consumption, high maintenance costs and the loss of commercial income during downtime in various branches of industry. The proper methods to measure and forecast the corrosion process would help intervene in process production where corrosion is a common phenomenon. Therefore, the main aim of this experimental study is to improve the widely used corrosion monitoring methods with corrosion coupons. As part of this work, the installation for testing corrosion process under controlled conditions and with the application of mild steel coupons is proposed. The measurement concept is to install the coupons in a stream with the corrosion liquid (these conditions should be controlled). The numerical simulations of the fluid flow in the coupon installation were carried out, and the obtained results in the form of a velocity map allowed us to propose the placement of the coupons in the tested installation in such a way that the flowing liquid evenly washed the coupon surface. The developed coupon installation was tested for aggressive corrosive conditions, which were assessed using the water stability indices (Langelier Saturation Index and Ryznar stability index). Moreover, the inductively coupled plasma optical emission spectroscopy analysis characterised the liquid samples from the tested coupon installation. The corrosion process for the applied conditions was defined based on the corrosion rate of the tested coupons. This process was also confirmed by obtaining the Raman spectrum for the used corrosion coupons. The obtained investigation contributes significantly by developing the novel coupon installation and demonstrating the procedure for testing the corrosion process with the application of coupons. This setup and method might be successfully applied for accelerated laboratory tests.
Collapse
|