1
|
Yang W, Li F, Li Q, Zheng X, Tao L, Chen X, Zhang Y, Du S, Gao C, Fang X, He F, Feng H, Huang J, Xu X, Hou P, Han W. Treatment and prediction of wastewater from waste transfer station in the eastern rural area of China by a combined system of anaerobic-oxic-anoxic-oxic, coagulation and adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123706. [PMID: 39700918 DOI: 10.1016/j.jenvman.2024.123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
In this study, a combined system of anaerobic-oxic-anoxic-oxic, coagulation and adsorption (AOAOCA) was used to treat the real waste transfer station (WTS) wastewater. The effects of hydraulic retention time (HRT), sludge reflux ratio (SRR), mixed liquid reflux ratio (MLRR), coagulant and zeolite on the contaminants removal efficiency were investigated. When the AOAOCA system was operated at the optimal conditions (HRT of 8 d, SRR of 70%, MLRR of 200%, PAFC as coagulant with dosage of 750 ppm and 1-3 mm zeolite with filling rate of 60%), the effluent COD, NH3-N and TP could reach 82.5 mg/L, 3.7 mg/L and 1.8 mg/L with the highest removal rates of 98.7%, 99.4% and 98.8%, respectively. The effluent of AOAOCA system could meet the "Pollution Control Standard for Domestic Garbage Landfill of China" (GB16889-2024). The greatest contribution to the COD, NH3-N and TP removal rates were from the anaerobic-oxic-anoxic-oxic process (91.2%-97.4%), while the contribution of coagulation and zeolite were 1.8%-6% and 0.8%-2.8%, respectively. The operating cost for WTS wastewater treatment by the proposed AOAOCA system was 17.72 RMB/t based on the costs for electricity, reagent and tap water consumption. The XGBoost model could be effectively used to predict the effluent of the proposed AOAOCA. This study could provide a highly feasible reference about the treatment of WTS wastewater for practical application.
Collapse
Affiliation(s)
- Wenjing Yang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Feiyue Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qingquan Li
- Zhejiang Province Association of Environmental Protection Industry, Hangzhou, 310012, China
| | - Xietian Zheng
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lu Tao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xikai Chen
- Department of Chemical, Biological and Environmental Engineering, Escola D'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Yue Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shiqi Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Chao Gao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaomeng Fang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Fan He
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaobin Xu
- School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Pingzhi Hou
- School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Wei Han
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Tang Q, Liu C, Lv D, Zhao L, Jiang L, Wang J. Biotemplated Fe/La-co-doped TiO 2 for photocatalytic depth treatment of compressed leachate from refuse transfer station. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40941-40957. [PMID: 38837031 DOI: 10.1007/s11356-024-33870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Compressed leachate is a contaminated liquid containing various organic and inorganic pollutants produced in municipal refuse transfer stations, which pollute soil and groundwater, posing serious risks to the environment and human health. The Environmental Technology Co., Ltd. (Shenzhen, Guangdong Province, South China) treated compressed leachate obtained from a refuse transfer station. The chemical oxygen demand (COD) (641.2 mg/L) of treated compressed leachate did not meet the wastewater quality standards in China for discharge into municipal sewers (COD ≤ 500 mg/L) and the company's design discharge requirements (COD ≤ 400 mg/L). Therefore, their further in-depth treatment is necessary. To this end, waste tobacco leaves were used as the biotemplate herein, and Fe/La-co-doped TiO2 (xFe,yLa)-TTiO2(g) was synthesized using a solvothermal-assisted biotemplating method. The photocatalytic depth treatment of compressed leachate was performed under simulated solar light using the prepared catalysts. After (3Fe,3La)-TTiO2(g) treatment, the COD of the leachate decreased from 641.2 to 280.1 mg/L, and the COD removal rate was 1.2, 1.1, and 1.6 times higher than that of pure Fe-doped, La-doped and non-biological template TiO2, respectively. Characterization confirmed that the biological template endowed the catalyst with a unique morphology and high specific surface area. Its rich activity sites are conducive to enhancing the adsorption capacity of pollutants and providing an ideal place for photocatalytic reactions. Co-doping with iron and lanthanum ions altered the band structure of TiO2 and promoted the interconversion of Fe3+/Fe2+ and La3+/La2+ during photocatalysis. First-principles density functional theory simulations demonstrated that co-doping Fe and La in TiO2 created impurity levels that facilitated the transfer of photogenerated electrons. This study provides a new purification pathway for the depth treatment of compressed leachate.
Collapse
Affiliation(s)
- Qinyuan Tang
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Chang Liu
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Die Lv
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lixia Zhao
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China
| | - Liang Jiang
- School of Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaqiang Wang
- School of Chemical Sciences and Engineering, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming, 650091, People's Republic of China.
- School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
3
|
Yan W, Wang Y, Li Y, Rong C, Wang D, Wang C, Wang Y, Yuen YL, Wong FF, Chui HK, Li YY, Zhang T. Treatment of fresh leachate by anaerobic membrane bioreactor: On-site investigation, long-term performance and response of microbial community. BIORESOURCE TECHNOLOGY 2023; 383:129243. [PMID: 37257727 DOI: 10.1016/j.biortech.2023.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This study proposed fresh leachate treatment with anaerobic membrane bioreactor (AnMBR) based on the on-site investigation of the characteristics of fresh leachate. Temperature-related profiles of fresh leachate properties, like chemical oxygen demand (COD), were observed. In addition, AnMBR achieved a high COD removal of 98% with a maximum organic loading rate (OLR) of 19.27 kg-COD/m3/d at the shortest hydraulic retention time (HRT) of 1.5 d. The microbial analysis implied that the abundant protein and carbohydrate degraders (e.g., Thermovirga and Petrimonas) as well as syntrophic bacteria, such as Syntrophomonas, ensured the effective adaptation of AnMBR to the reduced HRTs. However, an excessive OLR at 36.55 kg-COD/m3/d at HRT of 1 d resulted in a sharp decrease in key microbes, such as archaea (from 37% to 15%), finally leading to the deterioration of AnMBR. This study provides scientific guidance for treating fresh leachate by AnMBR and its full-scale application for high-strength wastewater.
Collapse
Affiliation(s)
- Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yemei Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yee-Lok Yuen
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Fanny Fong Wong
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Ho-Kwong Chui
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|