1
|
Hu C, Xiao Y, Jiang Q, Wang M, Xue T, Tao R, Mei Y. Adsorption and Desorption Behavior of Cr(VI) on Two Typical UV-Aged Microplastics in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27492-27500. [PMID: 39680861 DOI: 10.1021/acs.langmuir.4c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) are novel pollutants that can adsorb heavy metals in water environments and migrate together as carriers and are prone to aging due to the light in water. However, few reports have been published on the synergistic behavior and effects of these different types of aged MPs on the adsorption and desorption of Cr(VI). Here, two MP types─polyamide (PA) and polylactic acid (PLA)─were aged by UV irradiation, and the adsorption and desorption behaviors of MPs on Cr(VI) were studied. The results indicated that UV light can rapidly age MPs. After the MPs were exposed to UV light, their specific surface area, negative charge, and oxygenic groups increased, resulting in enhanced hydrophilicity. The aged MPs depicted a markedly enhanced adsorption capacity for Cr(VI) compared with the results of aged-PA > pristine-PA > aged-PLA > pristine-PLA. The process followed the Langmuir and pseudo-second-order models, confirming that chemical and monolayer adsorption are the primary processes involved in the adsorption of Cr(VI) by aged MPs. Cr(VI) was more easily desorbed in the simulated gastric fluid environment. The desorption rate of aged MPs was lower than that of pristine MPs because of their stronger binding forces to Cr(VI). The binding of Cr(VI) to MPs mainly depends on synergistic mechanisms such as electrostatic attraction, reduction reactions, and chelation of oxygenic groups. This study clarifies the reciprocity mechanism between aging MPs and Cr(VI) and provides further insights and guidance for controlling the joint pollution between MPs and heavy metal pollutants in the future.
Collapse
Affiliation(s)
- Chun Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yaodong Xiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qingrong Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mengyao Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Tingdan Xue
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ruidong Tao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
2
|
Kang A, Luo Y, Luo Q, Li S, Tang Y, Yi F, Zhang H, Chen Y, Jia M, Xiong W, Yang Z, Xu H. An investigation into the aging mechanism of disposable face masks and the interaction between different influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135308. [PMID: 39053070 DOI: 10.1016/j.jhazmat.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 μg/g (Pb) to 29.01 ± 1.83 μg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 μg/g), chromium (VI) (4.20 μg/g), thallium (I) (0.92 μg/g), tetracycline (0.51 μg/g), and acenaphthene (1.73 μg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.
Collapse
Affiliation(s)
- Anqi Kang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuanling Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Qiao Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siyu Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fan Yi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yalin Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Meiying Jia
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haiyin Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Sampsonidis I, Michailidou K, Spritinoudi K, Dimitriadi A, Ainali NM, Bobori DC, Lambropoulou DA, Kyzas GZ, Bikiaris DN, Kalogiannis S. Genotoxicity and metabolic changes induced via ingestion of virgin and UV-aged polyethylene microplastics by the freshwater fish Perca fluviatilis. CHEMOSPHERE 2024; 362:142619. [PMID: 38880257 DOI: 10.1016/j.chemosphere.2024.142619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present study aims to compare and assess the toxicity induced by aged (irradiated with ultraviolet radiation for 120 days) polyethylene microplastics (PE-MPs) in comparison to virgin (non-irradiated) ones, after feeding the freshwater fish Perca fluviatilis. To this end, MPs mediated genotoxicity was assessed by the investigation of micronucleus nuclear abnormalities frequency in fish blood, and the degree of DNA damage in the liver and muscle tissues, while metabolic alterations were also recorded in both tissues. Results showed that both virgin and aged PE-MPs induced signaling pathways leading to DNA damage and nuclear abnormalities, as well as metabolites changes in all tissues studied. Metabolic changes revealed that the metabolism of nucleic acids, energy, amino acids, and neurotransmitters was more disrupted in the liver and by aged PE-MPs compared to muscles. Fish fed with aged PE-MPs exhibited greater DNA damage, while blood cells of fish fed with virgin PE-MPs seemed to be more vulnerable to nuclear abnormalities in relation to those fed with aged PE-MPs. Moreover, aged PE-MPs induced more acute overall effects on the metabolic profiles of fish tissues, and initiated stronger stress responses, inflammation, and cellular damages in fish tissues in relation to virgin ones. Characterization of both virgin and aged MPs revealed that the latter exhibited lower crystallinity and melting point, more irregular shapes and higher moiety of oxygen and carbonyl groups, which could be attributed for their observed higher toxicity. The research outcomes provide significant insights for advancing toxicological investigations in this field.
Collapse
Affiliation(s)
- Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece
| | - Kostantina Michailidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Kalliopi Spritinoudi
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | | | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01, Thessaloniki, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala, GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400, Thessaloniki, Greece.
| |
Collapse
|
4
|
Matijaković Mlinarić N, Marušić K, Brkić AL, Marciuš M, Fabijanić TA, Tomašić N, Selmani A, Roblegg E, Kralj D, Stanić I, Njegić Džakula B, Kontrec J. Microplastics encapsulation in aragonite: efficiency, detection and insight into potential environmental impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1116-1129. [PMID: 38623703 DOI: 10.1039/d4em00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plastic pollution in aquatic ecosystems has become a significant problem especially microplastics which can encapsulate into the skeletons of organisms that produce calcium carbonates, such as foraminifera, molluscs and corals. The encapsulation of microplastics into precipitated aragonite, which in nature builds the coral skeleton, has not yet been studied. It is also not known how the dissolved organic matter, to which microplastics are constantly exposed in aquatic ecosystems, affects the encapsulation of microplastics into aragonite and how such microplastics affect the mechanical properties of aragonite. We performed aragonite precipitation experiments in artificial seawater in the presence of polystyrene (PS) and polyethylene (PE) microspheres, untreated and treated with humic acid (HA). The results showed that the efficiency of encapsulating PE and PE-HA microspheres in aragonite was higher than that for PS and PS-HA microspheres. The mechanical properties of resulting aragonite changed after the encapsulation of microplastic particles. A decrease in the hardness and indentation modulus of the aragonite samples was observed, and the most substantial effect occurred in the case of PE-HA microspheres encapsulation. These findings raise concerns about possible changes in the mechanical properties of the exoskeleton and endoskeleton of calcifying marine organisms such as corals and molluscs due to the incorporation of pristine microplastics and microplastics exposed to dissolved organic matter.
Collapse
Affiliation(s)
| | - Katarina Marušić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | | - Marijan Marciuš
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Tamara Aleksandrov Fabijanić
- The Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Nenad Tomašić
- Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Atiđa Selmani
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Damir Kralj
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Ivana Stanić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Branka Njegić Džakula
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Jasminka Kontrec
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
5
|
Hu C, Xiao Y, Jiang Q, Wang M, Xue T. Adsorption properties and mechanism of Cu(II) on virgin and aged microplastics in the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29434-29448. [PMID: 38575820 DOI: 10.1007/s11356-024-33131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Microplastics (MPs) migrate by adsorbing heavy metals in aquatic environments and act as their carriers. However, the aging mechanisms of MPs in the environment and the interactions between MPs and heavy metals in aquatic environments require further study. In this study, two kinds of materials, polyamide (PA) and polylactic acid (PLA) were used as target MPs, and the effects of UV irradiation on the physical and chemical properties of the MPs and the adsorption behavior of Cu(II) were investigated. The results showed that after UV irradiation, pits, folds and pores appeared on the surface of aged MPs, the specific surface area (SSA) increased, the content of oxygen-containing functional groups increased, and the crystallinity decreased. These changes enhanced the adsorption capacity of aged MPs for Cu(II) pollutants. The adsorption behavior of the PA and PLA MPs for Cu(II) conformed to the pseudo-second-order model and Langmuir isotherm model, indicating that the monolayer chemical adsorption was dominant. The maximum amounts of aged PA and PLA reached 1.415 and 1.398 mg/g, respectively, which were 1.59 and 1.76 times of virgin MPs, respectively. The effects of pH and salinity on the adsorption of Cu(II) by the MPs were significant. Moreover, factors such as pH, salinity and dosage had significant effects on the adsorption of Cu(II) by MPs. Oxidative complexation between the oxygen-containing groups of the MPs and Cu(II) is an important adsorption mechanism. These findings reveal that the UV irradiation aging of MPs can enhance the adsorption of Cu(II) and increase their role as pollutant carriers, which is crucial for assessing the ecological risk of MPs and heavy metals coexisting in aquatic environments.
Collapse
Affiliation(s)
- Chun Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
| | - Yaodong Xiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Qingrong Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Mengyao Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Tingdan Xue
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| |
Collapse
|
6
|
Zhang F, Chen H, Liu Y, Wang M. Phthalate acid ester release from microplastics in water environment and their comparison between single and competitive adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118964-118975. [PMID: 37922078 DOI: 10.1007/s11356-023-30720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
The ability of microplastics (MPs) to adsorb environmental pollutants has been extensively studied. However, little is known about the ability of MPs to release inherent additives and the interaction between them. This paper explored the effects of environmental factors on the release of phthalic acid esters (PAEs) from three different types of microplastics (polyethylene microplastics (PE-MPs), polypropylene microplastics (PP-MPs), and polystyrene microplastics (PS-MPs)) by simulating water environments, as well as the differences in the adsorption of one or more PAEs by MPs. The results showed that the types of MPs, single environmental factors, and combined environmental factors had a great influence on the release of di(2-ethylhexyl) phthalate (DEHP). In the influence of a single environmental factor, the releasing amount of DEHP increased significantly. When the pH value increased from 5 to 9, the release of three PAEs from all MPs decreased. Moreover, under the combined influence of three environmental factors, the DEHP release from PP-MPs was most affected by environmental factors, and the order of influence of the three environmental factors was ionic strength > organic matter > pH. The DEHP release of PS-MPs was the highest (0.058 ± 0.023 μg/L), followed by PP-MPs (0.038 ± 0.010 μg/L) and PE-MPs (0.035 ± 0.008 μg/L). Adsorption kinetics and isotherm fitting showed that the adsorption process of the three MPs was suitable for the pseudo-second-order kinetic model, and the Freundlich adsorption isotherm had a higher fitting degree. Compared with single adsorption, the competitive adsorption of three PAEs increased the adsorption capacity of DEHP and decreased the adsorption capacity of dibutyl phthalate (DBP) and diisobutyl phthalate (DIBP). These findings help predict the potential of MPs to release toxic additives under different environmental conditions.
Collapse
Affiliation(s)
- Furong Zhang
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China
| | - Hui Chen
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China
| | - Yuxuan Liu
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, No. 21, Gehu Middle Road, Wujin District, Changzhou, 213164, China.
| |
Collapse
|
7
|
He J, Chen S, Xu Y, Sun M, Yang T, Liang L, Xiong X. Reduced adsorption of norfloxacin on UV aging microplastics in anoxic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67174-67186. [PMID: 37103693 DOI: 10.1007/s11356-023-26771-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 05/25/2023]
Abstract
Over recent years, much attention has been paid to aging problem of microplastics and adsorption behavior of antibiotic on microplastics. In this study, four microplastics, including polystyrene (PS), polypropylene (PP), polyamide (PA) and polyethylene (PE), were photoaged by UV light in anoxic environment. The surface characteristics of microplastics and adsorption behavior of norfloxacin (NOR) on microplastics were investigated. Results indicated that the specific surface area and crystallinity increased, and hydrophobicity weakened of microplastics after UV aging. The content of C element decreased and the content of O barely changed in the aged microplastics. In addition, the adsorption of NOR on microplastics yielded a better fitness for the pseudo-second-order kinetics, Langmuir and Freundlich models. The adsorption capacities of NOR on PS, PA, PP, and PE at 288 K were 16.01, 15.12, 14.03, and 13.26 mg·g-1, respectively, while the adsorption capacities of NOR on aged microplastics were reduced to 14.20, 14.19, 11.50, and 10.36 mg·g-1, respectively, due to decrease of hydrophobicity and increase of crystallinity of microplastics after UV aging. The adsorption of NOR on microplastics decreased with the increase of temperature, implying the adsorption process was exothermic. Adsorption mechanism analysis showed that Van der Waals force was the main influential mechanism of the adsorption of NOR on PP and PE, and hydrogen bond was the main factor affecting the adsorption of NOR on PA, while the π-π interaction was the main mechanism impacting the adsorption of NOR on PS. Aging time and salinity significantly affect the adsorption of NOR on microplastics. With the increase of humic acid concentration and pH, the adsorption of NOR on microplastics first reduced and then rose. This study provides a basis for further clarifying the mechanism of UV aging microplastics and a reference for the study of combined pollution behavior of microplastics and antibiotics.
Collapse
Affiliation(s)
- Jing He
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China.
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 610299, China.
| | - Sijia Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yulin Xu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Mengxin Sun
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tingting Yang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Liang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xinyu Xiong
- Mianyang Zhongke Miantou Environmental Service Co., Ltd., Mianyang, 621010, China
| |
Collapse
|