1
|
Huang Y, Guo D, Qin L, Mo L, Zhao Y. Toxic effects of eight azole fungicides on the growth, photosynthetic activity, and oxidative stress of Raphidocelis subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1259-1271. [PMID: 40044425 DOI: 10.1093/etojnl/vgaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025]
Abstract
This study investigates the 96 hr toxicity and physiological effects of eight azole fungicides on Raphidocelis subcapitata (R. subcapitata). The findings revealed significant differences in toxicity levels among these fungicides, with the hierarchy of toxicity as follows: difenoconazole ≈ tetraconazole ≈ fuberidazole > metconazole > terrazole ≈ triflumizole > flutriafol > hymexazol. Increased concentrations of azole fungicides corresponded with decreased cellular activity and inhibited algal growth, highlighting the concentration-dependent nature of toxicity. The toxicological mechanisms involved include reduced levels of chlorophyll (Chla, Chlb) and carotenoids, disrupting the photosynthetic process. Additionally, exposure to these fungicides resulted in decreased total protein levels, increased reactive oxygen species and malondialdehyde, and elevated activity of antioxidant enzymes such as superoxide dismutase and catalase. Consequently, there was a significant rise in apoptosis rates among algal cells. These findings provide important insights for assessing the ecological impact of azole fungicides on aquatic ecosystems and aquatic life.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Dijie Guo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
- Engineering Research Center of Watershed Protection and Green Development, University of Guangxi, Guilin University of Technology, Guilin, China
| | - Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Yuqing Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
2
|
Zhang Y, Li T, Lin Y, Xu D, Jiao H. Physiological effects of sulfadiazine and sulfamethoxazole on Skeletonema costatum and toxicological evaluation using IBR v2 index. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117881. [PMID: 39999626 DOI: 10.1016/j.ecoenv.2025.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Sulfonamide antibiotics, widely used in human and veterinary medicine as well as agriculture, pose environmental concerns due to their stability and poor biodegradability. This study fills a critical gap in understanding the ecological impact of sulfonamide antibiotics on marine microalgae, particularly Skeletonema costatum, a key primary producer in marine ecosystems. This study investigated the biological responses of the marine microalga Skeletonema costatum to sulfadiazine (SD) and sulfamethoxazole (SMX). Both antibiotics significantly impacted S. costatum, with SD having a more pronounced effect. Growth studies showed a clear dose-response relationship: Low concentrations (0.5 mg/L) of SD and SMX stimulated growth, while higher concentrations (3 mg/L, 5 mg/L, and 10 mg/L) inhibited growth. The 96-hour half-maximal inhibitory concentrations (96h-IC50) were 1.654 mg/L and 1.838 mg/L, respectively, initially indicating that SD has a stronger inhibitory effect on S. costatum than SMX. Photosynthetic activity, measured by chlorophyll a content and the maximum quantum yield of photosystem II (Fv/Fm) values, showed that low concentrations (0.5 mg/L) of SD and SMX increased photosynthetic efficiency, while high concentrations (3 mg/L, 5 mg/L, and 10 mg/L) significantly inhibited it. Antioxidants activity analysis revealed that SD and SMX exposure altered superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and malondialdehyde (MDA) levels. SOD, GR, and GSH-Px levels initially increased but later decreased, suggesting a synergistic effect, while MDA levels consistently increased, indicating oxidative stress and biochemical disruption in algal cells. The Integrated Biomarker Response Version 2 (IBRv2) index provided a comprehensive evaluation of the ecological risks posed by SD and SMX, demonstrating that these antibiotics can significantly disrupt the physiology of marine microalgae. The IBRv2 index provided a comprehensive evaluation of the ecological risks posed by SD and SMX, demonstrating that these antibiotics can significantly disrupt the physiology of marine microalgae. Higher IBRv2 values for SD exposure indicated more substantial impacts on S. costatum. This study underscores the significant ecological risks of sulfonamide antibiotics in marine environments, highlighting the need for further research and regulation to mitigate their impact.
Collapse
Affiliation(s)
- Yurong Zhang
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China
| | - Yuxin Lin
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China.
| | - Haifeng Jiao
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
3
|
Li B, Zhang C, Ma Y, Zhou Y, Gao L, He D, Li M. Physiological and transcriptome level responses of Microcystis aeruginosa and M. viridis to environmental concentrations of triclosan. CHEMOSPHERE 2024; 363:142822. [PMID: 38986778 DOI: 10.1016/j.chemosphere.2024.142822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The toxicity of triclosan (TCS) to various aquatic organisms has been demonstrated at environmental concentrations. However, the effects and mechanisms of TCS on toxic cyanobacteria remains largely unexplored. This study investigated the physiological and molecular variations in two representative toxic Microcystis species (M. aeruginosa and M. viridis) under exposure to TCS for 12 d. Our findings demonstrated that the median effective concentration (EC50) of TCS for both Microcystis species were close to the levels detected in the environment (M. aeruginosa: 9.62 μg L-1; M. viridis: 27.56 μg L-1). An increased level of reactive oxygen species (ROS) was observed in Microcystis, resulting in oxidative damage when exposed to TCS at concentrations ranging from 10 μg L-1 to 50 μg L-1. The photosynthetic activity of Microcystis had a certain degree of recovery capability at low concentrations of TCS. Compared to M. aeruginosa, the higher recovery capability of the photosynthetic system in M. viridis would be mainly attributed to the increased ability for PSII repair and phycobilisome synthesis. Additionally, the synthesis of microcystins in the two species and the release rate in M. viridis significantly increased under 10-50 μg L-1 TCS. At the molecular level, exposure to TCS at EC50 for 12 d induced the dysregulation of genes associated with photosynthesis and antioxidant system. The upregulation of genes associated with microcystin synthesis and nitrogen metabolism further increased the potential risk of microcystin release. Our results revealed the aquatic toxicity and secondary ecological risks of TCS at environmental concentrations, and provided theoretical data with practical reference value for TCS monitoring.
Collapse
Affiliation(s)
- Bingcong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Chengying Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yuxuan Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Yun Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong SAR, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
4
|
Kumar K, Sarkar P, Paul T, Shukla SP, Kumar S. Ecotoxicological effects of triclosan on Lemna minor: bioconcentration, growth inhibition and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56550-56564. [PMID: 39271616 DOI: 10.1007/s11356-024-34944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Triclosan (TCS), an emerging pollutant, is a notable contributor to adverse impacts on aquatic organisms due to its widespread use during COVID-19 and hydrophobic properties. There is extensive documented literature on TCS toxicity in commercially important fish species; however, studies on aquatic plants remain limited. In this prelude, the present study aims to evaluate the effect of TCS on Lemna minor, a commercially important aquatic plant species for 7 days. The results showed dose-dependent significant alterations in growth, pigments and stress enzymes of L. minor at varied concentrations of TCS (1 to 8 mg L-1). Median inhibitory concentration (IC50) was found to be 4.813 mg L-1. Total chlorophyll and carotenoid levels decreased 73.11 and 81.83%, respectively after 7 days of TCS exposure. A significant increase in catalase and superoxide dismutase activity was observed in TCS exposed groups as compared to the control. Bioconcentration factor was found to be in the range of 5.855 to 37.129 signifying TCS ability to accumulate and transfer through the food chain. Scanning electron microscopy (SEM) analysis showed deformation in the cell surface and alteration of stroma morphology of TCS exposed groups. Furthermore, the Fourier transform infrared spectroscopy (FTIR) study also revealed that higher concentrations of TCS could cause alteration in the functional groups in the plant. This study demonstrates that TCS negatively impacts the growth and metabolism of primary producers, offering crucial insights into its interactions with aquatic plants and establishing baseline information essential for crafting effective mitigation strategies for TCS contamination in aquatic environments.
Collapse
Affiliation(s)
- Kundan Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Pritam Sarkar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, 855107, Bihar, India
| | - Satya Prakash Shukla
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Saurav Kumar
- Aquatic Environment & Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
5
|
Chang J, Wei P, Tian M, Zou Y, Zhang S. The responses and tolerance of photosynthetic system in Chlorella vulgaris to the pharmaceutical pollutant carbamazepine. CHEMOSPHERE 2024; 362:142608. [PMID: 38878981 DOI: 10.1016/j.chemosphere.2024.142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 08/09/2024]
Abstract
Screening for sensitive toxicological indicators and understanding algal tolerance to pharmaceutical contaminants (PhCs) are essential for assessing PhCs risk and their removal by microalgae. Carbamazepine (CBZ) showed adverse effects on microalgae, but the specific toxicity mechanisms on the most sensitive algal photosynthetic system (PS) remain limited. This study delved into the impact of CBZ exposure on the growth, cell viability, pigment content, and PS of Chlorella vulgaris. The findings revealed a notable inhibition of C. vulgaris growth by CBZ, with an IC50 value of 27.2 mg/L at 96 h. CBZ exposure induced algal membrane damage and cell viability. Intriguingly, CBZ drastically diminished intracellular pigment levels, notably showing "low promotion and high inhibition" of chlorophyll b (Chl b) by 72 h. Moreover, the study identified a decreased number of active reaction centers (RCs) within algal PSII alongside inhibited electron transport from QA to QB on the PSII receptor side, leading to PSII disruption. As an adaptive response to CBZ stress, C. vulgaris stimulated its Chl b synthesis, increased non-photochemical quenching (NPQ), and adapted its tolerance to bright light. Additionally, the alga attempted to compensate for the CBZ-induced reduction in electron transfer efficiency at the PSII receptor side and light energy utilization by increasing its electron transfer from downstream. Principal component analysis (PCA) further verified that the parameters on non-photochemical dissipation, electron transport, and integrative performance were the most sensitive algal toxicological indicators for CBZ exposure, and algal PS has energy protection capability through negative feedback regulation. However, prolonged exposure to high doses of CBZ will eventually result in permanent damage to the algal PS. Hence, attention should be paid to the concentration of CBZ in the effluent and the exposure time, while methods to mitigate algal photodamage should be appropriately sought for algal treatment of dense effluents.
Collapse
Affiliation(s)
- Jingjing Chang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Peiling Wei
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Meng Tian
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Ying Zou
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Shenghua Zhang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China.
| |
Collapse
|
6
|
Quan L, Chen K, Chen T, Li H, Li W, Cheng T, Xia F, Lou Z, Geng T, Sun D, Jiang W. Monitoring weed mechanical and chemical damage stress based on chlorophyll fluorescence imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1188981. [PMID: 37255557 PMCID: PMC10225704 DOI: 10.3389/fpls.2023.1188981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Currently, mechanical and chemical damage is the main way to carry out weed control. The use of chlorophyll fluorescence (CF) technology to nondestructively monitor the stress physiological state of weeds is significant to reveal the damage mechanism of mechanical and chemical stresses as well as complex stresses. Under simulated real field environmental conditions, different species and leaf age weeds (Digitaria sanguinalis 2-5 leaf age, and Erigeron canadensis 5-10 leaf age) were subjected to experimental treatments for 1-7 days, and fluorescence parameters were measured every 24 h using a chlorophyll fluorometer. The aim of this study was to investigate the changes in CF parameters of different species of weeds (Digitaria sanguinalis, Erigeron canadensis) at their different stress sites under chemical, mechanical and their combined stresses. The results showed that when weeds (Digitaria sanguinalis and Erigeron canadensis) were chemically stressed in different parts, their leaf back parts were the most severely stressed after 7 days, with photosynthetic inhibition reaching R=75%. In contrast, mechanical stress differs from its changes, and after a period of its stress, each parameter recovers somewhat after 1 to 2 days of stress, with heavy mechanical stress R=11%. Complex stress had the most significant effect on CF parameters, mainly in the timing and efficiency of changes in Fv/Fm, Fq'/Fm', ETR, Rfd, NPQ and Y(NO), with R reaching 71%-73% after only 3-4 days of complex stress, and its changes in complex stress were basically consistent with the pattern of changes in its chemical stress. The results of the study will help to understand the effects of mechanical and chemical stresses and combined stresses on CF parameters of weeds and serve as a guide for efficient weed control operations and conducting weed control in the future.
Collapse
Affiliation(s)
- Longzhe Quan
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Keyong Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianbao Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Hailong Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenchang Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianyu Cheng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Fulin Xia
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zhaoxia Lou
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Tianyu Geng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Deng Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Wei Jiang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Lu T, Zhang T, Yang W, Yang B, Cao J, Yang Y, Li M. Molecular Toxicity Mechanism Induced by the Antibacterial Agent Triclosan in Freshwater Euglena gracilis Based on the Transcriptome. TOXICS 2023; 11:toxics11050414. [PMID: 37235229 DOI: 10.3390/toxics11050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Triclosan (TCS), a commonly used antibacterial preservative, has been demonstrated to have high toxicological potential and adversely affects the water bodies. Since algae are one of the most significant primary producers on the planet, understanding the toxicological processes of TCS is critical for determining its risk in aquatic ecosystems and managing the water environment. The physiological and transcriptome changes in Euglena gracilis were studied in this study after 7 days of TCS treatment. A distinct inhibition ratio for the photosynthetic pigment content in E. gracilis was observed from 2.64% to 37.42% at 0.3-1.2 mg/L, with TCS inhibiting photosynthesis and growth of the algae by up to 38.62%. Superoxide dismutase and glutathione reductase significantly changed after exposure to TCS, compared to the control, indicating that the cellular antioxidant defense responses were induced. Based on transcriptomics, the differentially expressed genes were mainly enriched in biological processes involved in metabolism pathways and microbial metabolism in diverse environments. Integrating transcriptomics and biochemical indicators found that changed reactive oxygen species and antioxidant enzyme activities stimulating algal cell damage and the inhibition of metabolic pathways controlled by the down-regulation of differentially expressed genes were the main toxic mechanisms of TCS exposure to E. gracilis. These findings establish the groundwork for future research into the molecular toxicity to microalgae induced by aquatic pollutants, as well as provide fundamental data and recommendations for TCS ecological risk assessment.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weishu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Wang Z, Yu L, Wang DG. Dissolved Organic Matter and Lignin Modulate Aquatic Toxicity and Oxidative Stress Response Activated by Layered Double Hydroxides Nanomaterials. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:413-425. [PMID: 36790502 DOI: 10.1007/s00244-023-00985-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Advanced nanomaterials can be released into the environment and can coexist with natural organic matter (NOM). However, evidence on the impacts of NOM on the environmental behavior and toxicity of advanced nanomaterials is still scarce. Here, we investigated the behavior and toxic effects of two layered double hydroxides (LDHs) nanomaterials with different metallic constituents (Mg-Al-LDH and Zn-Al-LDH) at relatively low exposure concentrations on a freshwater green alga (Chlorella pyrenoidosa) in the absence and presence of two types of NOM, namely dissolved organic matter (DOM) and dealkaline lignin (DL). The DOM or DL interaction with the LDHs at different mixture levels was shown to be an antagonistic effect on the growth inhibition toxicity to C. pyrenoidosa mainly. The estimation of the index of Integrated Biological Responses version 2 indicated that the joint interaction of the LDHs with DOM or DL occurred in the following order of frequency synergism > antagonism > additivity. Furthermore, the physicochemical characteristics of LDHs were crucial for illuminating the mechanism by which the DOM or DL modified the LDH-induced oxidative stress response. These findings highlighted the important role of NOM in the behavior and effect of LDHs as a representative of a new class of multifunctional nanomaterials in the freshwater environment.
Collapse
Affiliation(s)
- Zhuang Wang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China.
| | - Le Yu
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, People's Republic of China
| | - De-Gao Wang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|