1
|
Srivastava V, Jha PK. Environmental impacts of coal mining and mitigation measures: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:545. [PMID: 40220217 DOI: 10.1007/s10661-025-13939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
This study aims to elucidate the hazards associated with the coal mining sector and its repercussions on various environmental components. Research publications from academic databases, such as Scopus, Web of Science, Google Scholar, and ScienceDirect, served as the basis for this review. Though economically feasible, coal extraction devastates the landscape, biodiversity, and natural habitats. Acidic trailing, excavation of the overburden rock, and associated biogeochemical alterations (like acid mine drainage) alter the landscape of the area concerned and pollute air, water, and soil. Heavy metal pollution can be mitigated with the use of remediation techniques such as biological (biosorption and bioaugmentation), chemical (using alkaline waste and chemical neutralization), and physical barriers (use of limestone filters and constructed wetlands). Despite global efforts and numerous techno-legal measures to address this issue, completely replacing coal with alternative energy sources remains a significant challenge that must be addressed.
Collapse
Affiliation(s)
- Vaishali Srivastava
- Centre of Environmental Studies, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Pawan Kumar Jha
- Centre of Environmental Studies, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
2
|
Singh AK, Yadav V, Rao VVA, Mishra DS, Yadav LP, Gangadhara K, Rane J, Sahil A, Ravat P, Janani P, Kaushik P, Khadivi A, Tunç Y. Characterization and evaluation of tamarind (Tamarindus indica L.) germplasm: implications for tree improvement strategies. BMC PLANT BIOLOGY 2025; 25:396. [PMID: 40148788 PMCID: PMC11951835 DOI: 10.1186/s12870-025-06415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Tamarind (Tamarindus indica L.; Fabaceae) a unique tree is valued not only for its fruits and timber but also for its shade, making it a popular avenue tree. It thrives in diverse climates and soils, particularly in semiarid regions, due to its deep root system, making it valuable in areas prone to water scarcity and high temperatures. It is now extensively grown in subtropical and semi-arid tropical regions of the world particularly common in India, Africa, and Southeast Asia. In this study, the morpho-physico-chemical variations of 30 tamarind genotypes were evaluated using multivariate analysis based on 28 variables which is essential for tree improvement. RESULTS This study characterizes a collection of 30 tamarind genotypes based on a range of qualitative and quantitative traits to assess phenotypic diversity. The analysis revealed wide variation across most of the traits, indicating their potential for distinguishing germplasm diversity. High phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were observed for tree height (24.34 and 21.26), stem girth (26.63 and 23.72), tree spread E-W (23.50 and 21.68), tree spread N-S (27.46 and 24.38), pod yield kg/tree (29.98 and 27.56), pod length (25.29 and 24.51), pod breadth (22.08 and 21.92), pulp weight (30.49 and 28.58), and pod weight 31.03 and 29.74), which indicates these traits display high variation, suggesting significant potential for selection. High heritability coupled with high genetic advance were observed for the most of traits which were influenced by additive or fixable genetic variation. Path coefficient analysis revealed that traits, such as stem girth and tree spread showed direct effects on pod yield, while other characters contributed indirectly. Principal component analysis (PCA) indicated that PC-1 accounted for approximately 27.648% of the total variance, followed by PC-2 (18.250%), and PC-3 (15.835%), and hierarchical clustering uncovered crucial genetic components and distinct clusters, which can be considered for targeted breeding strategies. Cluster II emerged as the most divergent cluster, due to its the highest inter-cluster distances with other clusters and the highest intra-cluster distance. CONCLUSIONS The results demonstrate how varied germplasm might be used to improve tamarind cultivars. To overcome heterogeneity in desired features, a complete collection of 28 morphological descriptors is provided to characterize, evaluate, and identify tamarind genotypes. The results underscore the importance of phenotypic diversity for developing core collections with enhanced variability and for designing targeted tamarind tree breeding strategies. This study provides valuable insights for the improvement and conservation of tamarind germplasm, a valuable species with considerable potential for fruit production and other economic uses. CLINICAL TRIAL STUDY Not applicable. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- A K Singh
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India
| | - Vikas Yadav
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India
| | - V V Appa Rao
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India
| | - Daya Shankar Mishra
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India.
| | - Lalu Prasad Yadav
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India
| | - K Gangadhara
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India
| | - Jagadish Rane
- ICAR-Central Institute for Arid Horticulture, Beechwal, Bikaner, Rajasthan, 334006, India
| | - A Sahil
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India
| | - Prakashbhai Ravat
- ICAR-Central Horticultural Experiment Station (CIAH RS), Godhra, Gujarat, 389340, India
| | - P Janani
- ICAR-Central Potato Research Station, Shillong, Meghalaya, 793 009, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India
| | - Ali Khadivi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Yazgan Tunç
- Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Hatay Olive Research Institute Directorate, 31700, Hatay, Hassa, Türkiye
| |
Collapse
|
3
|
Sahlaoui T, Raklami A, Heinze S, Marschner B, Bargaz A, Oufdou K. Nature-based remediation of mine tailings: Synergistic effects of narrow-leafed lupine and organo-mineral amendments on soil nutrient-acquiring enzymes and microbial activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123035. [PMID: 39471605 DOI: 10.1016/j.jenvman.2024.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Rising global metal demand has led to extensive mining, leaving post-mining landscapes with degraded soil and metal contamination. The exacerbated heavy metals concentrations deteriorate soil microbial activity and consequent microbial biomass, enzymatic activities, and organic matter are impaired. This study explores nature-based solutions, focusing on assisted natural remediation and organo-mineral amendments: marble waste (Mw), clay (Cy), and compost (Cp). Lupinus angustifolius L., a key bioremediator, is highlighted for its role in mine rehabilitation, adaptation to extreme edaphic conditions, and contribution to enhanced nutritional status. The specific aim of this study is to evaluate the synergetic impact of the use of L. angustifolius with four soil combined treatments (Com): Com1: Cy2.5-Cp2.5-Mw10; Com2: Cy2.5-Cp5-Mw5; Com3: Cy7.5-Cp2.5-Mw7.5; and Com4: Cy10-Cp10-Mw10. As a practical approach to sustainable mining soil rehabilitation, it emphasizes soil microbial biomass and activity, soil fertility, plant growth, and heavy metal immobilization in a concise and impactful manner. These combinations were used as the soil substrate material for a four-month greenhouse experiment where plant growth parameters, heavy metal accumulation, soil properties, microbial activity, and bioavailable metal content were determined. The study underscored the positive effects of the treatments Com1, Com3, and Com4 on heavy metal mobility, microbial biomass, and carbon, nitrogen, and phosphorus-acquiring enzymes. Notably, bioavailable heavy metals were effectively reduced, with copper, zinc, and lead decreasing up to 2-fold, 2-fold, and 1.8-fold, respectively. Microbial biomass and soil enzyme activities responded positively to our amendments, indicating improved nutrient cycling. Microbial biomass carbon increased up to 4-fold, and similarly, β-glucosidase, N-acetyl-ß-glucosaminidases, L-Arginase, and acid phosphatase (Pho) increased up to 1.9-fold, 47-fold, 12.85-fold, and 2-fold, respectively. Furthermore, soil carbon and nitrogen contents increased up to 11.15-fold and 9.41-fold, respectively. This study suggested a positive and impactful influence on the intricate processes of soil carbon and nitrogen cycling, indicative of increased microbial activity, and offered a nature-based solution to mitigate the environmental impact of extensive mining.
Collapse
Affiliation(s)
- Tarik Sahlaoui
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Anas Raklami
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Stefanie Heinze
- Department of Soil Science and Soil Ressources, Institute of Geography, Ruhr University Bochum, Universität Strasse 150, 44801, Bochum, Germany.
| | - Bernd Marschner
- Department of Soil Science and Soil Ressources, Institute of Geography, Ruhr University Bochum, Universität Strasse 150, 44801, Bochum, Germany
| | - Adnane Bargaz
- Agrobiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnology, Agrosciences, and Environment (BioMAgE), Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; Agrobiosciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
4
|
Bashir Z, Raj D, Selvasembian R. A combined bibliometric and sustainable approach of phytostabilization towards eco-restoration of coal mine overburden dumps. CHEMOSPHERE 2024; 363:142774. [PMID: 38969231 DOI: 10.1016/j.chemosphere.2024.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Extraction of coal through opencast mining leads to the buildup of heaps of overburden (OB) material, which poses a significant risk to production safety and environmental stability. A systematic bibliometric analysis to identify research trends and gaps, and evaluate the impact of studies and authors in the field related to coal OB phytostabilization was conducted. Key issues associated with coal extraction include land degradation, surface and groundwater contamination, slope instability, erosion and biodiversity loss. Handling coal OB material intensifies such issues, initiating additional environmental and physical challenges. The conventional approach such as topsoiling for OB restoration fails to restore essential soil properties crucial for sustainable vegetation cover. Phytostabilization approach involves establishing a self-sustaining plant cover over OB dump surfaces emerges as a viable strategy for OB restoration. This method enhanced by the supplement of organic amendments boosts the restoration of OB dumps by improving rhizosphere properties conducive to plant growth and contaminant uptake. Criteria essential for plant selection in phytostabilization are critically evaluated. Native plant species adapted to local climatic and ecological conditions are identified as key agents in stabilizing contaminants, reducing soil erosion, and enhancing ecosystem functions. Applicable case studies of successful phytostabilization of coal mines using native plants, offering practical recommendations for species selection in coal mine reclamation projects are provided. This review contributes to sustainable approaches for mitigating the environmental consequences of coal mining and facilitates the ecological recovery of degraded landscapes.
Collapse
Affiliation(s)
- Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| |
Collapse
|
5
|
Shah WUH, Lu Y, Liu J, Rehman A, Yasmeen R. The impact of climate change and production technology heterogeneity on China's agricultural total factor productivity and production efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168027. [PMID: 37898215 DOI: 10.1016/j.scitotenv.2023.168027] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Sustainable agricultural production efficiency is important for global food security, environmental conservation, economic development, human Health, and social equity. However, Climate change has had a significant impact on global agricultural productivity. To this end, investigating climate change's effect on agricultural production efficiency is critical for the food security of any particular country or region, and China is not distinct. Further, the influencing factor of agricultural total factor productivity (technology or technical efficiency) and regional heterogeneity in agricultural production technologies of China are worth exploring for sustainable agricultural growth. To this end, this study employed the DEA-Malmquist Productivity Index to gauge the total factor productivity change (TFPC) in 31 provinces and administrative units of China from 2000 to 2021. Additional inputs of climate factors were added to the estimation process to explore the impact of climate change on TFPC for different periods and regions. The meta-frontier analysis estimates the agriculture production technology gap among nine regions of China. Results revealed that climate factors could overestimate China's average total factor agricultural productivity over the study period. Among 8 out of 9 regions in China witnessed the diverse effects of climate factors; however, it positively impacted agricultural TFPC in the Qinghai Tibet Plateau. Sichuan Basin and surrounding regions performed best, ranked top in China with an average growth rate of 22.3 % in TFPC. Decomposing the TFPC into efficiency and technological change, the study found that the influence of climate on technological change is greater than compared to efficiency change. Northeast China Plain and Sichuan Basin and surrounding regions have superior agriculture production technology with a TGR score 1. Mann-Whitney U and Kruskal-Wallis test proved the statistically significant difference among agricultural productivity scores estimated with and without climate factors and production technology gaps among nine regions of China.
Collapse
Affiliation(s)
| | - Yuting Lu
- School of Management, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jianhua Liu
- School of Management of Zhengzhou University, China.
| | - Abdul Rehman
- College of Economics and Management, Henan Agricultural University, Zhengzhou 450002, China.
| | - Rizwana Yasmeen
- School of Economics and Management, Panzhihua University, Panzhihua 617000, Sichuan, China; Department of Economics, University of Religions and Denominations, Qom 37491-13357, Iran.
| |
Collapse
|
6
|
Ojo GJ, Onile OS, Momoh AO, Oyeyemi BF, Omoboyede V, Fadahunsi AI, Onile T. Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. J Genet Eng Biotechnol 2023; 21:172. [PMID: 38133697 PMCID: PMC10746654 DOI: 10.1186/s43141-023-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The contribution of the processes involved and waste generated during gold mining to the increment of heavy metals concentration in the environment has been well established. While certain heavy metals are required for the normal functioning of an organism, certain heavy metals have been identified for their deleterious effects on the ecosystem and non-physiological roles in organisms. Hence, efforts aimed at reducing their concentration level are crucial. To this end, soil and water samples were collected from Ilesha gold mining, Osun State, Nigeria, and they were subjected to various analyses aimed at evaluating their various physicochemical parameters, heavy metal concentration, heavy metal-resistant bacteria isolation, and other analyses which culminated in the molecular characterization of heavy metal-resistant bacteria. RESULTS Notably, the results obtained from this study revealed that the concentration of heavy metal in the water samples around the mining site was in the order Co > Zn > Cd > Pb > Hg while that of the soil samples was in the order Co > Cd > Pb > Hg > Zn. A minimum inhibitory concentration test performed on the bacteria isolates from the samples revealed some of the isolates could resist as high as 800 ppm of Co, Cd, and Zn, 400 ppm, and 100 ppm of Pb and Hg respectively. Molecular characterization of the isolates revealed them as Priestia aryabhattai and Enterobacter cloacae. CONCLUSION Further analysis revealed the presence of heavy metal-resistant genes (HMRGs) including merA, cnrA, and pocC in the isolated Enterobacter cloacae. Ultimately, the bacteria identified in this study are good candidates for bioremediation and merit further investigation in efforts to bioremediate heavy metals in gold mining sites.
Collapse
Affiliation(s)
- Glory Jesutomisin Ojo
- Department of Biological Sciences, Biotechnology Programme, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria.
| | - Olugbenga Samson Onile
- Department of Biological Sciences, Biotechnology Programme, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Abdul Onoruoiza Momoh
- Department of Biological Sciences, Microbiology Programme, Elizade University, Ilara Mokin, P.M.B, 002, Ilara-Mokin, 340271, Nigeria
| | - Bolaji Fatai Oyeyemi
- Department of Science Laboratory Technology, Molecular Biology Group, The Federal Polytechnic, Ado-Ekiti, Ekiti, Nigeria
| | - Victor Omoboyede
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, P.M.B 704, Akure, Nigeria
| | - Adeyinka Ignatius Fadahunsi
- Department of Biological Sciences, Biotechnology Programme, Elizade University, P.M.B, 002 Ilara-Mokin, Ilara-Mokin, 340271, Nigeria
| | - Tolulope Onile
- Department of Biological Sciences, Microbiology Programme, Elizade University, Ilara Mokin, P.M.B, 002, Ilara-Mokin, 340271, Nigeria
| |
Collapse
|
7
|
Yang G, Su C, Zhang H, Zhang X, Liu Y. Tree-level landscape transitions and changes in carbon storage throughout the mine life cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166896. [PMID: 37717743 DOI: 10.1016/j.scitotenv.2023.166896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Opencast mining activities destroy native vegetation, directly impacting the carbon sequestration capacity of the regional ecosystem. Restoring tree species have significant impacts on carbon storage. However, changes in carbon storage across tree-level landscape and the impact of tree-level landscape transitions on carbon storage remain poorly described in the literature, and this information is urgently needed to support management decisions. In this study, we combined field data and remote sensing techniques to create field data-driven maps of the tree-level landscape. This enabled the assessment of carbon storage and quantification of the impact of tree-level landscape transitions on carbon storage. We founded that carbon storage rises in initial/stable stages, decreases in development stage during mining expansion and reclamation. The choice of restoration tree species significantly influenced carbon storage. Pinus tabuliformis-R. pseudoacacia accumulated more carbon storage, making it a more suitable model for ecological reclamation of Pingshuo opencast mine. Furthermore, changes in carbon storage are influenced by land-use policies. Land-use policies and reclamation efforts counterbalance carbon loss associated with construction. Various tree-level landscape transitions were examined, with Pinus tabuliformis transitions notably affecting carbon storage, offering insights for ecological reclamation planning. Our research provides a reference for carbon storage assessment in opencast mining areas, enhances understanding of carbon storage changes in mining areas, assists in formulating ecological reclamation plans, and contributes to the "dual‑carbon" goals and climate change mitigation.
Collapse
Affiliation(s)
- Guoting Yang
- Institute of loess plateau, Shanxi University, Taiyuan 030006, China
| | - Chao Su
- Institute of loess plateau, Shanxi University, Taiyuan 030006, China
| | - Hong Zhang
- Institute of loess plateau, Shanxi University, Taiyuan 030006, China; College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
| | - Xiaoyu Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Yong Liu
- Institute of loess plateau, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
8
|
Gairola SU, Bahuguna R, Bhatt SS. Native Plant Species: a Tool for Restoration of Mined Lands. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2023; 23:1438-1448. [PMID: 36855557 PMCID: PMC9948791 DOI: 10.1007/s42729-023-01181-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/08/2023] [Indexed: 05/24/2023]
Abstract
The COVID-19 epidemic, food and water insecurity, and the climate emergency have impacted the lives of billions of people worldwide. Ecosystems play a crucial role in tackling these problems. Hence, it is a prime necessity to keep the ecosystems safe and sustainably manage the resources. But this would not suffice for the protection and sustainable management of our surviving natural landscapes and oceans; we also need to restore the planet's devastated ecosystems and the enormous benefits they give. Mining exerts a lot of pressure on the land resources further depleting the fertility of the soil. The overburdened dumps are devoid of the nutrients which turns natural succession at a slow pace. The restoration of the degraded mined areas is essential to re-establish the ecological balance so that a self-sustaining ecosystem can be maintained. The plantation of selected species of plants could be a sustainable and organic tool for the restoration of the degraded mined land. In today's context, various ways regarding ecological restoration are suggested, but the native plant species plantation is the best tool for restoring the degraded land at a quicker pace. The present paper reviews the importance of the native plant species and their efficacy in restoring degraded mined land based on area and time of succession and climax.
Collapse
Affiliation(s)
| | - Rajesh Bahuguna
- Law College Dehradun, Uttaranchal University, Dehradun, 248007 Uttarakhand India
| | | |
Collapse
|