1
|
Sobczyk M, Rossberg A, Santhana Krishna Kumar A, Marzec M, Cwanek A, Łokas E, Nguyen Dinh C, Bajda T. Highly efficient uranium uptake by the eco-designed cocamidopropyl betaine-decorated Na-P1 coal fly-ash zeolite. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135230. [PMID: 39038376 DOI: 10.1016/j.jhazmat.2024.135230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
In some locations around the globe, the U concentrations may exceed WHO standards by 2-folds therefore, effective yet environmentally wise solutions to purify radioactive waters are of significant importance. Here, the optimized and fully controlled coal-fly-ash based Na-P1 zeolite functionalization by employing novel, biodegradable biosurfactant molecule - cocamidopropyl betaine (CAPB) is showcased. The zeolite's surface decoration renders three composites with varying amounts of introduced CAPB molecule (Na-P1 @ CAPB), with 0.44, 0.88, and 1.59-times External Cation Exchange Capacity (ECEC). Wet-chemistry experiments revealed extremely high U adsorption capacity (qmax = 137.1 mg U/g) unveiling preferential interactions of uranyl dimers with CAPB molecules coupled with ion-exchange between Na+ ions. Multimodal spectroscopic analyses, including Fourier-Transformed Infra-Red (FT-IR), X-ray Photoelectron (XPS), and X-ray Absorption Fine Structure (XAFS), showed the hexavalent oxidation state of U, and no secondary release of the CAPB molecule from the composite. The EXAFS signals fingerprint changes in the interatomic distances of adsorbed U, showing the impact of the O and N, heteroatoms present in the CAPB molecule on U binding mechanism. The presented research outcomes showcase the easy, scalable, optimized, and environmentally friendly synthesis of biofunctional zeolite effectively purifying the real-life U-bearing wastewaters from the vicinity of the Pribram deposit (Czech Republic).
Collapse
Affiliation(s)
- M Sobczyk
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| | - A Rossberg
- The Rossendorf Beamline at ESRF - The European Synchrotron, CS40220, 38043 Cedex 9 Grenoble, France; Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan
| | - M Marzec
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology (ACMiN), al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - A Cwanek
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Department of Mass Spectrometry, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| | - E Łokas
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Department of Mass Spectrometry, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| | - C Nguyen Dinh
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - T Bajda
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
2
|
Khan MI, Sufian S, Shamsuddin R, Farooq M, Saafie N. Synergistic adsorption of methylene blue using ternary composite of phosphoric acid geopolymer, calcium alginate, and sodium lauryl sulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33573-7. [PMID: 38955975 DOI: 10.1007/s11356-024-33573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/30/2024] [Indexed: 07/04/2024]
Abstract
The removal of dyes from the aquatic ecosystem is necessary being a major threat to life. For enhanced remediation of methylene blue (MB) dye, a new ternary biopolymer-geopolymer-surfactant composite adsorbent is synthesized by combining phosphoric acid geopolymer (PAGP), calcium alginate (Alg), and sodium lauryl sulfate (SLS). During the synthesis of the composites, PAGP and SLS were mixed with the alginate matrix, producing porous hybrid beads. The PAGP-SLS-alginate (PSA) beads prepared were characterized using different analytical tools, i.e., scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FTIR), X-ray diffractometry (XRD), surface area and porosimetery (SAP), and thermogravimetric analysis (TGA). To ascertain the ideal conditions for the adsorption process, a batch reactor procedure was used to investigate the effects of several parameters on MB adsorption, including pH (2, 4, 6, 8, 10), PSA adsorbent dosage (0.06-0.12 g), MB concentration (50-500 mg/L), contact time (15 to 300 min), and temperature (25, 35, and 45 °C). The SEM investigation indicated that ~ 1860 μm-sized PSA beads with 6-8 μm voids are generated. Based on XRD, FTIR, and SAP examinations, the material is amorphous, having numerous functional groups and an average pore size of 6.42 nm. Variation of pH has a little effect on the adsorption process, and the pH of 7.44 was found to be the pHpzc of the PSA beads. According to the findings of the batch study, equilibrium adsorption was obtained in 270-300 min, showing that the adsorption process was moderately slow-moving and effective. The dye adsorption linearly increased with initial dye concentration over concentration range of 50-500 mg/L and reciprocally decreased with rise in temperature. 0.06 g adsorbent dose, 25 °C, pH10, and 270 min were found to be the better conditions for adsorption experiments. Langmuir isotherm fitted well compared to Freundlich, Temkin, and Dubinin-Radushkevich (DR) isotherm models on the experimental data, and the maximum adsorption capacity(qmax) calculated was 1666.6 mg. g-1. Pseudo-second-order (PSO) kinetics model and multi steps (two) intra particle diffusion (IPD) model fitted well on the adsorption kinetics data. The system's entropy, Gibbs free energy, and change in enthalpy were measured and found to be -109.171 J. mol-1. K-1, - 8.198 to - 6.014 kJ. mol-1, and - 40.747 kJ. mol-1. Thermodynamics study revealed that adsorption process is exothermic, energetically favorable and resulting in the decrease in randomness. Chemisorption is found to be the dominant mechanism as confirmed by pH effect, Langmuir isotherm, PSO kinetics, IPD model, and thermodynamics parameters. PSA beads were successfully regenerated using ethanol in a course of 120 min and re-used for five times. To sum up, the PSA adsorbent's impressive adsorption capability of 1666.66 mg/g highlights its potential as a successful solution for methylene blue removal. The results of this study add to the expanding corpus of information on sophisticated adsorption materials and demonstrate PSA's potential for real-world uses in wastewater treatment and environmental clean-up.
Collapse
Affiliation(s)
- Muhammad Irfan Khan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Sri Iskandar, Perak, Malaysia
- Centre of Innovative Nanostructures & Nano Devices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Suriati Sufian
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Sri Iskandar, Perak, Malaysia.
- Centre of Innovative Nanostructures & Nano Devices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia.
| | - Rashid Shamsuddin
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, 42311, Madinah, Saudi Arabia
| | - Muhammad Farooq
- National Centre of Excellence for Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Nabilah Saafie
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Sri Iskandar, Perak, Malaysia
- Centre of Innovative Nanostructures & Nano Devices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
3
|
Chen S, Wen H, Zheng T, Liu X, Wang Z, Tian S, Fan H, Chen Y, Zhao H, Wang Y. Engineering sodium alginate-SiO2 composite beads for efficient removal of methylene blue from water. Int J Biol Macromol 2023; 239:124279. [PMID: 37011753 DOI: 10.1016/j.ijbiomac.2023.124279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/05/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
The lack of sufficient active binding sites in commonly reported sodium alginate (SA)-based porous beads hampers their performances in adsorption of water contaminants. To address this problem, porous SA-SiO2 beads functionalized with poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) are reported in this work. Due to the porous properties and the existence of abundant sulfonate groups, the obtained composite material SA-SiO2-PAMPS shows excellent adsorption capacity toward cationic dye methylene blue (MB). The adsorption kinetic and adsorption isotherm studies reveal that the adsorption process fits closely to pseudo-second-order kinetic model and Langmuir isotherm model, respectively, suggesting the existence of chemical adsorption and monolayer adsorption behavior. The maximum adsorption capacity obtained from Langmuir model is found to be 427.36, 495.05, and 564.97 mg/g under 25, 35, and 45 °C, respectively. The calculated thermodynamic parameters indicate that MB adsorption on SA-SiO2-PAMPS is spontaneous and endothermic.
Collapse
Affiliation(s)
- Siyu Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Huimin Wen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Tanghao Zheng
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xuhai Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Ziquan Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Shilin Tian
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hao Fan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yingjie Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Huaixia Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|