1
|
Mandal RR, Bashir Z, Raj D. Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater - A green approach to escalate the remediation of heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124199. [PMID: 39848176 DOI: 10.1016/j.jenvman.2025.124199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Water pollution from Heavy metal (HM) contamination poses a critical threat to environmental sustainability and public health. Industrial activities have increased the presence of HMs in wastewater, necessitating effective remediation strategies. Conventional methods like chemical precipitation, ion exchange, adsorption, and membrane filtration are widely used but possess various limitations. These include high costs, environmental impacts, and the potential for generating secondary pollutants, highlighting the need for sustainable alternatives. Phytoremediation, enhanced by microbial interactions, offers an eco-friendly solution to this issue. The unique physiological and biochemical traits of plants, combined with microbial metabolic capabilities, enable efficient uptake and detoxification of HMs. Microbial enzymes play a crucial role in these processes by breaking down complex compounds, enhancing HM bioavailability, and facilitating their conversion into less toxic forms. Synergistic interactions between root-associated microbes and plants further improves metal absorption and stabilization, boosting phytoremediation efficiency. However, challenges remain, including the limited bioavailability of contaminants and plant resilience in highly polluted environments. Recent advancements focus on improving microbial-assisted phytoremediation through mechanisms like bioavailability facilitation, phytoextraction, and phytostabilization. Genetic engineering facilitates the altering of genes that control plant immune responses and growth which improves the ability of plants to interact beneficially with microbes to thrive in HM rich environments while efficiently cleaning contaminated wastewater. This review examines these strategies and highlights future research directions to enhance wastewater remediation using phytoremediation technologies.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
2
|
Lin K, Yi Z, Lv S, Zhang B, Guo Z, Li Y. Uncovering the key lncRNAs in regulating cadmium accumulation and translocation in sweet sorghum. PLANTA 2024; 261:12. [PMID: 39661199 DOI: 10.1007/s00425-024-04589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
MAIN CONCLUSION 1988 lncRNAs were identified in sweet sorghum roots under cadmium treatment; lncRNA 15962 and lncRNA 11558 were validated to be the key lncRNAs involved in regulating cadmium accumulation and translocation. Cadmium (Cd) has become one of the most harmful and widespread pollutants with industry development. Sweet sorghum is an ideal plant for phytoremediation of Cd-contaminated soil. However, little is known about the regulatory role of long non-coding RNAs (lncRNAs) associated with Cd stress response in sweet sorghum. Here, lncRNA-seq was carried out in the roots of two contrasting sweet sorghum genotypes (high-Cd accumulation genotype 'H18', and low-Cd accumulation genotype 'L69'). A total of 1988 lncRNAs were characterized, including 52 and 69 differentially expressed lncRNAs in 'H18' and 'L69' in response to Cd stress, respectively. Furthermore, the trans- or cis-target genes of lncRNAs were investigated. Then, 65 lncRNAs were characterized as the probable target of 117 miRNAs and 1888 genes were identified as putative cis-target genes of Cd-responsive lncRNAs. The dual-luciferase reporter assay indicated lncRNA 15962 may serve as the endogenous target mimics of sbi-miR5565e, which targeted two genes (Sobic.005G212900 and Sobic.009G144700) involved in cell wall metabolism. Four cis-target genes including SbYS1 which encoding a Cd chelate transporter, were up-regulated by overexpression of their corresponding lncRNAs in sweet sorghum protoplasts, suggesting the positive regulatory role of lncRNAs to these cis-target genes. Moreover, the expression of SbYS1 decreased when lncRNA 11558 was inhibited by exogenous miRNA application in 'H18' seedlings, further demonstrating the positive regulatory role of lncRNA 11558 to SbYS1. Altogether, our findings shed light on the regulatory role of lncRNAs associated with Cd accumulation and translocation in sweet sorghum.
Collapse
Affiliation(s)
- Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijin Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
3
|
Bayuo J, Rwiza MJ, Choi JW, Njau KN, Mtei KM. Recent and sustainable advances in phytoremediation of heavy metals from wastewater using aquatic plant species: Green approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122523. [PMID: 39305882 DOI: 10.1016/j.jenvman.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
A key component in a nation's economic progress is industrialization, however, hazardous heavy metals that are detrimental to living things are typically present in the wastewater produced from various industries. Therefore, before wastewater is released into the environment, it must be treated to reduce the concentrations of the various heavy metals to maximum acceptable levels. Even though several biological, physical, and chemical remediation techniques are found to be efficient for the removal of heavy metals from wastewater, these techniques are costly and create more toxic secondary pollutants. However, phytoremediation is inexpensive, environmentally friendly, and simple to be applied as a green technology for heavy metal detoxification in wastewater. The present study provides a thorough comprehensive review of the mechanisms of phytoremediation, with an emphasis on the possible utilization of plant species for the treatment of wastewater containing heavy metals. We have discussed the concept, its applications, advantages, challenges, and independent variables that determine how successful and efficient phytoremediation could be in the decontamination of heavy metals from wastewater. Additionally, we argue that the standards for choosing aquatic plant species for target heavy metal removal ought to be taken into account, as they influence various aspects of phytoremediation efficiency. Following the comprehensive and critical analysis of relevant literature, aquatic plant species are promising for sustainable remediation of heavy metals. However, several knowledge gaps identified from the review need to be taken into consideration and possibly addressed. Therefore, the review provides perspectives that indicate research needs and future directions on the application of plant species in heavy metal remediation.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Ghana; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania; Graduate School of International Agricultural Technology, Seoul National University, South Korea.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, South Korea
| | - Karoli Nicholas Njau
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tanzania
| |
Collapse
|
4
|
Ren WL, Ullah A, Yu XZ. Biochar influences phytoremediation of heavy metals in contaminated soils: an overview and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61397-61425. [PMID: 39446207 DOI: 10.1007/s11356-024-35318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Heavy metals (HMs) contamination has gained much attention due to its high degree of toxicity for living organisms. Therefore, different techniques are underway to eradicate HMs from the environment. Among the biological techniques, phytoremediation is a suitable method, but owing to the slow rate and chance of HMs penetration into the food chain, alternative techniques are needed to reduce their phytotoxicity, and biochar is one of them. Due to the diverse characteristics, biochar immobilizes HMs in the soil by improving soil pH, ion exchange, electrostatic interactions, complexation, precipitation, surface adsorption, and microbial activation. Thereby, amendment of biochar in the HMs-contaminated soils reduces HMs toxicity to plants and limits their penetration into the food chain. In contrast, some biochars have also been studied to induce metal availability in soils and subsequently its uptake by plants. This dual role of biochar depends on the feedstock of biochar, incineration temperature, and the rate of application. Moreover, biochar treatments enhance plant growth under HMs stress by improving nutrient availability, water retention capacity, scavenging of reactive oxygen species, and photosynthetic efficiency. Owing to the beneficial characteristics of biochar in HMs-contaminated sites, the number of publications has tremendously increased. Additionally, the plant species and the types of HMs that have been tested frequently under biochar treatments in these articles have been studied. Overall, the current study would help in understanding the mechanisms of how biochar influences phytoremediation of HMs and improves plant growth in HMs-polluted soils and the current scenario of the available literature.
Collapse
Affiliation(s)
- Wei-Lin Ren
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
5
|
Kou L, Chen H, Zhang X, Liu S, Zhang B, Zhu H, Du Z. Enhanced degradation of phthalate esters (PAEs) by biochar-sodium alginate immobilised Rhodococcus sp. KLW-1. ENVIRONMENTAL TECHNOLOGY 2024; 45:3367-3380. [PMID: 37191443 DOI: 10.1080/09593330.2023.2215456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
In this study, a new strain of bacteria, named Rhodococcus sp. KLW-1, was isolated from farmland soil contaminated by plastic mulch for more than 30 years. To improve the application performance of free bacteria and find more ways to use waste biochar, KLW-1 was immobilised on waste biochar by sodium alginate embedding method to prepare immobilised pellet. Response Surface Method (RSM) predicted that under optimal conditions (3% sodium alginate, 2% biochar and 4% CaCl2), di (2-ethylhexyl) phthalate (DEHP) degradation efficiency of 90.48% can be achieved. Under the adverse environmental conditions of pH 5 and 9, immobilisation increased the degradation efficiency of 100 mg/L DEHP by 16.42% and 11.48% respectively, and under the high-stress condition of 500 mg/L DEHP concentration, immobilisation increased the degradation efficiency from 71.52% to 91.56%, making the immobilised pellets have strong stability and impact load resistance to environmental stress. In addition, immobilisation also enhanced the degradation efficiency of several phthalate esters (PAEs) widely existing in the environment. After four cycles of utilisation, the immobilised particles maintained stable degradation efficiency for different PAEs. Therefore, immobilised pellets have great application potential for the remediation of the actual environment.
Collapse
Affiliation(s)
- Liangwei Kou
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Xueqi Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Shaoqin Liu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Zhimin Du
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| |
Collapse
|
6
|
Ullah A, Lin YJ, Zhang H, Yu XZ. Identification of the Key Genes Involved in Proline-Mediated Modification of Cell Wall Components in Rice Seedlings under Trivalent Chromium Exposure. TOXICS 2023; 12:4. [PMID: 38276717 PMCID: PMC10818556 DOI: 10.3390/toxics12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Chromium (Cr) toxicity exerts a detrimental effect on various physiological, biochemical, and molecular attributes of plants including the structure and functions of cell walls. On the other hand, the exogenous application of proline (Pro) is a beneficial strategy to overcome Cr toxicity. Therefore, it is a novel strategy to find the key genes associated with cell wall composition in rice under trivalent Cr with/without Pro application. A total of 203 genes were activated in the four cell wall biosynthesis pathways under chromium stress, namely cellulose (60), hemicellulose (57), lignin (35), and pectin (51). Based on the expression abundance of microarrays, the number of differentially expressed genes, and the expression level of genes, the lignin pathway was a crucial pathway in response to Cr treatments, followed by the cellulose pathway. Through the estimation of gene expression variation factors between 'Cr' and 'Cr+Pro' treatments, OsUGP1, OsBGLU24, OsBGLU29, OsBGLU33, OsBMY1, and OsBMY2 in the cellulose pathway; OsXTH9, OsXTH10, OsXTH16, OsGAUT3, OsGAUT19, OsGAUT28, OsXTH1, OsGAUT12, and OsGAUT21 in the hemicellulose pathway; OsPAL3, OsPAL3, OsPOX1, and OsPRX77 in the lignin pathway; and OsPME25, OsPGL27, OsPME26, OsPGL9, and OsPLL12 in the pectin pathway are the key genes involved in cell wall modification during Cr exposure with exogenous Pro application. The Pro-mediated activation of these genes could be crucial players in modifying the cell wall structure and composition of rice plants under Cr stress, which needs to be further clarified.
Collapse
Affiliation(s)
| | | | | | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China; (A.U.); (Y.-J.L.); (H.Z.)
| |
Collapse
|
7
|
Li C, Feng Y, Tian P, Yu X. Mathematical Estimation of Endogenous Proline as a Bioindicator to Regulate the Stress of Trivalent Chromium on Rice Plants Grown in Different Nitrogenous Conditions. TOXICS 2023; 11:803. [PMID: 37888654 PMCID: PMC10611392 DOI: 10.3390/toxics11100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The accumulation of proline impacts the defense mechanisms of plants against the harmful effects of adverse environmental conditions; however, its concentration in plants is associated with the metabolism of N. Therefore, the effects of exogenous organic [glutamate (Glu)/arginine (Arg)] and inorganic [nitrate (NO3-)/ammonium (NH4+)] N on the accumulation of proline (Pro) in rice plants under trivalent chromium [Cr(III)] stress were studied through using the mass balance matrix model (MBMM). Application of 'NH4+' showed the largest contribution to the Pro content in rice shoots under different concentrations of Cr(III), followed by 'NO3-', 'Arg', and 'Glu' applications. On the other hand, 'Arg' application displayed the largest contribution to the Pro content in roots under Cr(III) stress, followed by 'NH4+', 'Glu', and 'NO3-' applications. The combined application of 'NH4++Arg' showed the greatest contribution to the Pro content in both roots and shoots of Cr(III)-treated rice seedlings, while the application of 'NO3-+Glu' showed the least contribution to the Pro content in rice seedlings. The current study indicated that the endogenous level of Pro in rice seedlings is quite sensitive to Cr(III) stress under different N sources, and the mathematical modeling showed a reliable result while estimating the relationship between Pro content and N source application.
Collapse
Affiliation(s)
| | | | | | - Xiaozhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China (Y.F.)
| |
Collapse
|